Department of Computer Science Engineering

B.Tech. Computer Science and Engineering Curriculum and Syllabus

(Applicable to the students admitted during AY 2022-23)

School of Engineering and Sciences SRM University-AP, Andhra Pradesh

					Sem	lester				
Category	Ι	II	ш	IV	V	VI	VII	VII I	Tot al	%
Ability Enhancement Courses - AEC	0	0	2	2	0	0	0	0	4	2.4
Value Added Courses - VAC	0	0	0	0	0	4	0	0	4	2.4
Skill Enhancement Courses - SEC	2	2	2	2	3	3	0	0	14	8.4
Foundation / Interdisciplinary Courses - FIC	12	17	0	0	0	0	0	0	29	17.5
CC / SE / CE / TE / DE / HSS	4	3	14	15	19	18	11	0	84	50.6
Minor / Open Elective - OE	0	0	3	3	3	3	3	0	15	9.0
(Research/ Design/ Industrial Practice/Project/Thesis/Internship) -RDIP	0	0	0	0	0	0	4	12	16	9.6
Grand Total	18	22	21	22	25	28	18	12	166	100.0

Semester wise Course Credit Distribution Under Various Categories

				SEMESTER I					
S.No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С	LH
1	SEC	SEC	ISES 101	Industry Specific Employability Skills-I	3	0	0	1	30
2	SEC	SEC	ENTR100	Exploratory Learning and Discovery	0	0	2	1	30
3	FIC	FIC	BIO 103/ENV 111	Introductory Biology for Engineers /Environmental Science	2	0	0	2	60
4	FIC	FIC	EGL 101	Communicative English	3	0	0	3	90
5	FIC	FIC	PHY 101/ CHE 103	Engineering Physics/ Chemistry for Engineers	2	0	0	2	60
6	FIC	FIC	PHY 101L/ CHE 103L	Engineering Physics Lab/ Chemistry for Engineers Lab	0	0	2	1	30
7	FIC	FIC	CSE 108	Introduction to Computer Science and Programming Using C	3	0	0	3	90
8	FIC	FIC	CSE 108L	Introduction to Computer Science and Programming Using C Lab	0	0	2	1	30
9	Core	CC	MAT 113	Calculus	3	0	0	3	90
10	Core	CC	IRH 101	Orientation on Internationalization	1	0	0	1	30
				Semester Total	17	0	6	18	540

				SEMESTER II					
S.No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С	LH
1	SEC	SEC	CSE 130	Industry Standard Coding Practice - I	0	0	2	2	60
2	FIC	FIC	MAT 211	Linear Algebra	3	0	0	3	90
3	FIC	FIC	MAT 141	Discrete Mathematics	3	0	0	3	90
4	FIC	FIC	BIO 103/ENV 111	Introductory Biology for Engineers /Environmental Science	2	0	0	2	60
5	FIC	FIC	EEE 103L	Basic Electrical and Electronics Lab	0	0	1	1	30
6	FIC	FIC	ISES 102	Industry Specific Employability Skills-II	3	0	0	1	30
7	FIC	FIC	PHY 101/CHE 103	Engineering Physics/ Chemistry for Engineers	2	0	0	2	60
8	FIC	FIC	PHY 101L/CHE 103L	Engineering Physics Lab/ Chemistry for Engineers Lab	0	0	1	1	30
9	FIC	FIC	CSE 109	Data Structures – I	3	0	0	3	90
10	FIC	FIC	CSE 109L	Data Structures – I Lab	0	0	1	1	30
11	Core	CC	EEE 103	Basic Electrical and Electronics	3	0	0	3	90
				Semester Total	19	10	5	22	660

				SEMESTER III					
S.No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С	LH
1	AEC	AEC	AEC 105	Analytical Skills for Engineers	1	0	1	2	60
2	VAC	VAC	VAC 103	Co-Curricular Activities	0	0	2	2*	60*
3	VAC	VAC	VAC 104	Community Service and Social Responsibility	0	0	2	2*	60*
4	SEC	SEC	CSE 201	Coding Skill - I	2	0	0	2	60
5	Core	CC	CSE 202	Object Oriented Programming with C++	3	0	1	4	120
6	Core	CC	CSE 203	Data Structure -II	3	0	1	4	120
7	Core	CC	CSE 204	Digital Electronics	3	0	1	4	120
8	Core	CC	CSE 205	Hands on with Python	0	0	2	2	60
9	OE	OE	OE	Open Elective/Minor	3	0	0	3	90
				Semester Total	15	0	10	21	570

	SEMESTER IV											
S.No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С	LH			
1	AEC	AEC	AEC 104	Creativity and Critical thinking Skills	1	0	1	2	60			
2	VAC	VAC	VAC 103	Co-Curricular Activities	0	0	2	2*	60*			
3	VAC	VAC	VAC 104	Community Service and Social Responsibility	0	0	2	2*	60*			
4	SEC	SEC	CSE 206	Coding Skill - II	2	0	0	2	60			
5	Core	CC	CSE 207	Design and Analysis of Algorithms	3	0	1	4	120			
6	Core	CC	CSE 208	Probability and Statistics	3	0	0	3	90			
7	Core	CC	CSE 209	Database Management Systems	3	0	1	4	120			
8	Core	CC	CSE 210	Web Technology	3	0	1	4	120			
9	OE	OE	OE	Open Elective/Minor	3	0	0	3	90			
				Semester Total	18	0	8	22	660			

	SEMESTER V											
S.No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С	LH			
1	VAC	VAC	VAC 103	Co-Curricular Activities	0	0	2	2*	60*			
2	VAC	VAC	VAC 104	Community Service and Social Responsibility	0	0	2	2*	60*			
3	SEC	SEC		Career Skills-1	3	0	0	3	90			
4	Core	CC	CSE 301	Computer Networks	3	0	1	4	120			
5	Core	CC	CSE 302	Operating Systems	3	0	1	4	120			
6	Core	CC	CSE 303	Machine Learning	3	0	1	4	120			
7	Core	CC	CSE 304	Automata and Compilers Design	3	0	0	3	90			
8	Core	CC	CSE 305	Computer Organization and Architecture	3	0	1	4	120			
9	OE	OE	OE	Open Elective/Minor	3	0	0	3	90			
				Semester Total	21	0	8	25	750			

				SEMESTER VI					
S.No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С	LH
1	VAC	VAC	VAC 103	Co-Curricular Activities	0	0	2	2	60
2	VAC	VAC	VAC 104	Community Service and Social Responsibility	0	0	2	2	60
3	SEC	SEC		Career Skills-2	3	0	0	3	90
4	Core	CC	CSE 306	Software Engineering and Project Management	3	0	1	4	120
5	Core	CC	CSE 307	Mobile Application Development with Java	3	0	1	3	90
6	Elective	CE		Core Elective - I	3	0	0	3	90
7	Elective	CE/SE		Stream Elective - I	3	0	1	4	120
8	Elective	CE/SE		Stream Elective - II	3	0	1	4	120
9	OE	OE	OE	Open Elective/Minor	3	0	0	3	90
				Semester Total	21	0	8	28	840

	SEMESTER VII											
S.No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С	LH			
1	Elective	CE		Core Elective - II	3	0	0	3	90			
2	Elective	SE		Stream Elective - III	3	0	1	4	120			
3	Elective	SE		Stream Elective - IV	3	0	1	4	120			
4	OE	OE	OE	Open Elective/Minor	3	0	0	3	90			
5	RDIP	RDIP	Ι	Summer Internship/ Mini Project/Research Project	0	0	2	4	120			
	Semester Tota						4	18	540			

	SEMESTER VIII											
S.No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С	LH			
1	RDIP	RDIP		Major Project	0	0	12	12	<mark>360</mark>			
				Semester Total	0	0	12	12	360			

Note: L-T/D-P/Pr and the class allocation is as follows.

- a. Every 1 credit of Lecture/Tutorial per week is equal to one contact hour of 60 minutes.
- b. Every 1 credit of Discussion per week is equal to two contact hours of 60 minutes.
- c. Every 1 credit of Practical per week is equal to two contact hours of 60 minutes.
- d. Every 1 credit of Project per week is equal to two contact hours of 60 minutes (timetable not required)

S.No	Semester	Credits
1	Ι	18
2	II	22
3	III	21
4	IV	22
5	V	25
6	VI	28
7	VII	18
8	VIII	12
	Total	166

S.No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С	LH
1	Elective	SE	CSE 455	Artificial Intelligence	3	0	1	4	120
2	Elective	SE	CSE 456	Digital Image Processing	3	0	1	4	120
3	Elective	SE	CSE 457	Deep Learning	3	0	1	4	120
4	Elective	SE	CSE 458	Principles of Soft Computing	3	0	1	4	120

	Specialization: Cyber Security												
S.No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С	LH				
1	Elective	SE	CSE 459	Cryptography and Network Security	3	0	1	4	120				
2	Elective	SE	CSE 460	Web Application Penetration Testing	3	0	1	4	120				
3	Elective	SE	CSE 461	Vulnerability Analysis and Cyber Forensics	3	0	1	4	120				
4	Elective	SE	CSE 462	Blockchain Technology	3	0	1	4	120				

	Specialization: Big Data Analytics													
S.No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С	LH					
1	Elective	SE	CSE 463	Data Warehousing and Mining	3	0	1	4	120					
2	Elective	SE	CSE 464	Applied Data Science	3	0	1	4	120					
3	Elective	SE	CSE 465	Principles of Big Data Management	3	0	1	4	120					
4	Elective	SE	CSE 466	Information Retrieval	3	0	1	4	120					

			Specializa	tion: Distributed and Cloud Computing					
S.No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С	LH
1	Elective	SE	CSE 467	Parallel and Distributed Computing	3	0	1	4	120
2	Elective	SE	CSE 468	Cloud Computing	3	0	1	4	120
3	Elective	SE	CSE 469	Edge Computing	3	0	1	4	120
4	Elective	SE	CSE 470	Service Oriented Computing	3	0	1	4	120

	Specialization: Internet of Things													
S.No	Category	Sub- Category	Course Code	Course Title	T/D	P/Pr	С	LH						
1	Elective	SE	CSE 471	Embedded Systems	3	0	1	4	120					
2	Elective	SE	CSE 472	IoT System Design and Implementation	3	0	1	4	120					
3	Elective	SE	CSE 473	IoT Data Analytics	3	0	1	4	120					
4	Elective	SE	CSE 474	IoT Security and Blockchain	3	0	1	4	120					

	Technical Electives													
S.No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С	LH					
1	Elective	TE	CSE 421	Human Computer Interaction	3	0	0	3	90					
2	Elective	TE	CSE 422	Advanced Computer Architecture	3	0	0	3	90					
3	Elective	TE	CSE 423	Natural Language Processing	3	0	0	3	90					
4	Elective	TE	CSE 424	Computer Graphics	3	0	0	3	90					
5	Elective	TE	CSE 425	Advanced Data Structures and Algorithms	3	0	0	3	90					
6	Elective	TE	CSE 426	Distributed Operating Systems	3	0	0	3	90					
7	Elective	TE	CSE 427	Data and Web Mining	3	0	0	3	90					
8	Elective	TE	CSE 428	Complexity Theory	3	0	0	3	90					
9	Elective	TE	CSE 429	Software Project Management	3	0	0	3	90					
10	Elective	TE	CSE 430	Multimedia	3	0	0	3	90					

11	Elective	TE	CSE 457	Deep Learning	3	0	0	3	90
12	Elective	TE	CSE 432	Advanced Database Management Systems	3	0	0	3	90
13	Elective	TE	CSE 433	Fog Computing	3	0	0	3	90
14	Elective	TE	CSE 434	Parallel Algorithms	3	0	0	3	90
15	Elective	TE	CSE 435	Web Services	3	0	0	3	90
16	Elective	TE	CSE 436	Advances in Data Mining	3	0	0	3	90
17	Elective	TE	CSE 437	Social Network Analysis	3	0	0	3	90
18	Elective	TE	CSE 438	Recommender Systems	3	0	0	3	90
19	Elective	TE	CSE 439	Computational and Complexity Theory	3	0	0	3	90
20	Elective	TE	CSE 459	Cryptography and Network Security	3	0	0	3	90
21	Elective	TE	CSE 455	Artificial Intelligence	3	0	0	3	90
22	Elective	TE	CSE 442	Machine Learning on Edge Computing	3	0	0	3	90
23	Elective	TE	CSE 443	Mobile and wireless security	3	0	0	3	90
24	Elective	TE	CSE 444	Internet protocols and networking	3	0	0	3	90
25	Elective	TE	CSE 445	Mobile application security testing	3	0	0	3	90
26	Elective	TE	CSE 446	intern	3	0	0	3	90
27	Elective	TE	CSE 447	Biometric Security	3	0	0	3	90
28	Elective	TE	CSE 448	Cyber Law	3	0	0	3	90
29	Elective	TE	CSE 449	Ethical Hacking	3	0	0	3	90
30	Elective	TE	CSE 450	Security audit and Risk Assessment	3	0	0	3	90
31	Elective	TE	CSE 451	Digital Forensics and Incident Response	3	0	0	3	90
32	Elective	TE	CSE 452	Security Analytics	3	0	0	3	90
33	Elective	TE	CSE 453	Multiview Geometry	3	0	0	3	90
34	Elective	TE	CSE 454	Quantum Computation	3	0	0	3	90

	Minor in Computer Science													
S.No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С	LH					
1	OE	OE	CSE 241	Computational Problem Solving	3	0	0	3	90					
2	OE	OE	CSE 242	OOPS through Java	3	0	0	3	90					
3	OE	OE	CSE 243	Advanced Python Programming	3	0	0	3	90					
4	OE	OE	CSE 244	Relational Database Management Systems	3	0	0	3	90					
5	OE	OE	CSE 245	Network and Web Programming	3	0	0	3	90					
6	OE	OE	CSE 246	Project	3	0	0	3	90					

	Minor in Data Science													
S.No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С	LH					
1	OE	OE	CSE 247	Machine Learning	3	0	0	3	90					
2	OE	OE	CSE 248	Data Analytics using Python	3	0	0	3	90					
3	OE	OE	CSE 249	Deep Learning	3	0	0	3	90					
4	OE	OE	CSE 250	Data warehousing and Mining	3	0	0	3	90					
5	OE	OE	CSE 251	Project	3	0	0	3	90					

	Minor in AI and ML												
S.No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С	LH				
1	OE	OE	CSE 252	Machine Learning	3	0	0	3	90				
2	OE	OE	CSE 253	Digital Image Processing	3	0	0	3	90				
3	OE	OE	CSE 254	Deep Learning	3	0	0	3	90				
4	OE	OE	CSE 255	Soft Computing	3	0	0	3	90				
5	OE	OE	CSE 256	Project	3	0	0	3	90				

SEMESTER I

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal

Guntur District, Mangalagiri, Andhra Pradesh 522240

INDUSTRY SPECIFIC EMPLOYABILITY SKILLS

Course Code	ISES 101	Course Category	SEC	L-T-P-C	3	0	0	1	
Pre-Requisite Course(s)	-	Co-Requisite Course(s)		Progressive Course(s)]	ISES 102			
Course Offering Department	CDC	Professional / Licensing Standards							

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Develop interpersonal skills to become a good team player.

Objective 2: Develop socialization skills, positive attitude, and behavioural skills.

Objective 3: Eliminate their barriers of communication and take conscious efforts to improve their skill sets.

Objective 4: Recognise practice and acquire the skills necessary to deliver effective presentation with clarity and impact.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Recognise the factors which motivate him in learning.	1	70%	60%
Outcome 2	Apply the knowledge of creativity and originality.	3	80%	70%
Outcome 3	Employ lateral thinking in solving problems.	1	70%	60%
Outcome 4	Identify themselves as team player.	1	90%	80%

Course Outcomes / Course Learning Outcomes (CLOs)

	Cou	rse Articulation Matrix (CLO) to Program Learning Outcomes (PLO)
CLOs		Program Learning Outcomes (PLO)

														-	And
Outcome 1	E n gi n e e r i n gK n o W l e d g e	ProblemAnalysis	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e 1	SocietyandMulticulturalSkills	E n v i r o n m e n t a n d S u s t a i n a b i l i t y	M o r a l , a n d E t h i c a l A w a r e n e s s	I ndi vidualandTeamworkSkills	C o m m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a n c e	Self-DirectedandLifelongLearning	P S O 1	P S O 2	P S O 3
Outcome 2		2			3			3	3	-		1			
Outcome 3		3			5			5	2			2			
Outcome 4		5						2	3			2			
Course Average		3			2			4	4			3			

Course Unitization Plan

Unit No.	Unit Name	Require d Contact Hours	CLOs Addresse d	Reference s Used
Unit 1	Quants			
	Speed calculations, Time, and Distance	1	2,3	2,4
	Problems on Trains, Boats and Streams, Races and Games, Escalator problems	1	2,3	2,4
	Time and work, Chain rule, Pipes and Cistern	1	2,3	2,4
	Simplification, surds and indices,	1	2,3	2,4
	square roots and cube roots, Functions	1	2,3	2,4
Unit 2	Reasoning			
	Number Series, Alphabet series, Odd Man Out, Missing number, Wrong number	1	2,3	1,4
	Analogies, Mathematical Operations, Calendars, Clocks	1	2,3	1,4
	Cryptarithmetics, Identification of cross variable relations	1	2,3	1,4

	SUDOKU	1	2,3	1,4	
Unit 3	Verbal				
	Basic sentence structure: Nouns, Pronouns, Adjectives, Parts of speech, Degree of comparison	1	1,2	3,7	
	Articles, conditionals, and sentences (kinds), Verb Tense, Sentence formation.	1	1,2	3,7	
	Paragraph formation, change of voice, Change of speech, Synonyms, Antonyms.	1	1,2	3,7	
Unit 4	Communication Skills				
	Self-introduction	1	1,4	5,6	
	Presentations	1	1,4	5,6	
	E-Mail Etiquettes	1	1,4	5,6	
	Total Contact Hours	15			

Recommended Resources

- 1. R.S. Agarwal, A Modern Approach to Verbal & Non-Verbal Reasoning, S. Chand Publication
- 2. How to prepare for Quantitative Aptitude for CAT Arun Sharma
- 3. Meenakshi Upadhyay, Arun Sharma -Verbal Ability and Reading Comprehension
- 4. How to prepare for Logical reasoning and data interpretation for CAT Arun Sharma.
- 5. Mastering Soft skills Julian Vyner.
- 6. Soft skills Key to success in workplace and life Meenakshi Raman, Shalini Upadhyay.
- 7. English grammar and composition S. C. Gupta.

				Lear	ning Ass	essment						
			Cont	tinuous	Learnin	g Assess	ments (50%)		End S	End Semester	
Bloom's Level of Cognitive Task				Mid-	Mid-1 (15%)		CLA-2 (10%)		Mid-2 (15%)		Exam (50%)	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac	
Level 1	Remember	40%		50		40%		50%		50%		
Level 1	Understand	40%		%		40%		30%		30%		
Level 2	Apply	60%	50		60%	60%	50%		50%			
Level 2	Analyse	00%		%		60%	0%	30%		30%		
Level 3	Evaluate											
Level 5	Create											
,	Tetal	100		100		100		100		100		
Total		%		%		%		%		%		

Course Designers Mr. Asghar Ahamad, Soft skills trainer, Department of CDC, SRM University AP.

Introductory biology for Engineers											
Course Code	BIO 103	Course Category	FIC	L-T-P-C	2	0	0	2			
Pre-Requisite		Co-Requisite		Progressive							
Course(s)		Course(s)		Course(s)							
Course Offering	Department of	Professional /									
Department	Biological	Licensing									
	Sciences	Standards									
Board of Studies		Academic									
Approval Date		Council									
		Approval Date									

Introductory Biology for Engineers

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** Provide students with a foundational understanding of biomolecules, cell structures, and functions, as well as the diversity of life forms.
- **Objective 2:** Equip students with knowledge of molecular biology processes, cell physiology, and the use of bioinformatics tools for analyzing biological data.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Understand the structure and function of carbohydrates, lipids, nucleic acids, and proteins.	2	80%	75%
Outcome 2	Describe the structure and function of prokaryotic and eukaryotic cells, and understand life diversity.	2	70%	65%
Outcome 3	Explain membrane transport, cellular respiration, photosynthesis, enzymes, vitamins, and hormones.	2	70%	65%
Outcome 4	Understand DNA structure, replication, transcription, translation, and the impact of mutations.	2	70%	65%
Outcome 5	Use bioinformatics tools to analyze biological data and access databases like NCBI.	3	70%	65%

										(PLO)	;				
CL Os	Engi neeri ng Kno wled ge	Pro ble m An alys is	Desig n and Devel opme nt	Ana lysi s, Des ign and Res earc h	Mo der n To ol and IC T Us age	Societ y and Multi cultur al Skills	Envir onme nt and Sustai nabilit y	Mor al, and Ethi cal Awa rene ss	Indi vidu al and Tea mwo rk Skill s	Comm unicati on Skills	Proje ct Mana geme nt and Finan ce	Self - Dir ecte d and Life lon g Lea rnin g	P S O 1	P S O 2	P S O 3
Out co me 1	1	1		1				1	1	1		2			
Out co me 2	1	1		1				1	1	1		2			
Out co me 3	1	2		2				1	1	1		2			
Out co me 4	1	2		2				1	1	1		2			
Out co me 5	1	2	1	2	3			1	1	2		3			
Co urs e Ave rag e	1	1. 6	1	1.6	3			1	1	1.2		2. 2			

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References
Unit 1	Biomolecules	6		
	Why study Biology?	1	1, 2	1, 2, 3
	Evolution of complex biomolecules	1	1, 2	1, 2, 3
	Life on earth	1	1, 2	1, 2, 3

	Biomolecules - carbohydrates	1	1 2 5	1 2 3
		1	1, 2, 5 1, 2	1, 2, 3
	Biomolecules – lipids and fats	1	1, 2	1, 2, 3 1, 2, 3
	Biomolecules – nucleic acids	1	1, 2	1, 2, 3
II. 4 0	and proteins	(
Unit 2	Cell Biology	6	1.0.0	1.0.0
	Prokaryotic cell structure	2	1, 2, 3	1, 2, 3 1, 2, 3
	Eukaryotic cell (Animal and	2	1.0.0	1, 2, 3
	Plant) - structure and	2	1, 2, 3	
	functions of organelles			
	Diversity of life: virus,	2	1,2	1, 2, 3
	bacteria, archaea and eukarya		-,-	
Unit 3	Cell Physiology	6		
	Membrane transport	1	1,3	1, 2, 3 1, 2, 3
	Cellular respiration and	2	1, 2	1, 2, 3
	energy generation		1, 4	
	Brief account of	1	1,2	1, 2, 3
	Photosynthesis	1		
	Enzymes and their kinetics	1	1,2	1, 2, 3
	Vitamins, Hormones	1	1,2	1, 2, 3 1, 2, 3
Unit 4	Molecular Biology	6		
	DNA and Chromosomes:	1	1.5	1, 2, 3
	structure and organization	1	1-5	
	Central Dogma- DNA			1, 2, 3
	replication, transcription and	2	1-5	
	translation			
	Cell division – mitosis and	1	1.5	1, 2, 3
	meiosis	1	1-5	
	Mutations, Cancer, and	•	1.5	1, 2, 3
	genetic diseases.	2	1-5	
Unit 5	Biological Sequences and			
	Databases	6		
	Concept of genomics,			4
	transcriptomics, proteomics,	1	1,5	
	and metabolomics		7 -	
	FASTA file format	1	1,5	4
	Biological databases – NCBI	1	1,5	4
	Applications of BLAST and			4
	protein/Gene ID conversion	1	1, 3, 5	
	Hands on experience in			4
	analyzing biological data	2	1, 3, 5	+
	using above mentioned tools	\angle	1, 3, 5	
	Total Contact Hours		30	
	I VIAI CUIITACE FIVUIS		30	

Recommended Resources

 Thrives in Biochemistry and Molecular Biology, Edition 1, 2014, Cox, Harris, Pears, Oxford University Press.

2. Thrives in Cell Biology, Ed. 1, 2013, Qiuyu Wang, Chris Smith and Davis, Oxford

University Press.
3. iGenetics: A Molecular Approach by Peter J Russell, 3rd edition, Pearson International Edition.
4. Bioinformatics Introduction – Mark Gerstein.

Learning Assessment

рі		Contin	End Semester Exam (50%)			
Bloom's Level of Cognitive Task		CLA-1 (10%)	Mid-1 (15%)	CLA-2 (10%)	CLA-3 (15%)	
		Th	Th	Th	Th	Th
Level	Remember	100%	30%	70%	60%	70%
1	Understand	100%	3070	7070	0070	70%
Level	Apply		70%	30%	40%	30%
2	Analyse		7070	3070	4070	30%
Level	Evaluate					
3	Create					
	Total	100%	100%	100%	100%	100%

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	ENV 111	Course Category	FIC	L-T-P-C	2002
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)	
Course Offering Department	Environmental Science and Engineering	Professional/ Licensing Standards			

Course Objectives

- **1.** Aims to provide a comprehensive introduction to wide-ranging environmental issues and their drivers.
- 2. To understand numerous approaches to reduce a variety of contemporary environmental problems for a sustainable future.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Explain sustainable solutions for various environmental issues.	2	80%	70%
2	Infer the functioning of ecosystems, matter cycling, and diversity of species around us.	2	80%	70%

3	Determine the impact of overexploitation of natural resources on our environment.	3	80%	70%
4	Explore the extent of environmental pollution and diverse regulations, policies and efforts to reduce the environmental burden.	3	80%	70%

					Pro	pram I	earnin	g Out	comes	(PLO)					
C L Os	EngineeringKnowledge	ProblemAnalysis	D es ig n a n d D ev el o p m e nt	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S oc ie ty a n d M ul ti cu lt ur al S ki ll s	E nv ir on en t an d S us tai na bi lit y	M o r a l, a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k i l s	Co m m un ica tio n Sk ills	Pr oj ec t M a n a g e m e n t a n d Fi n a n c e	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f - n g L e a r n g L e a r n g	P S O 1	P S O 2	P S O 3
O ut co m e 1	1	-	-	-	-	-	3	1	-	-	-	1	-	-	-
O ut co m e 2	1	1	-	-	-	-	3	-	-	-	-	1	-	-	-
O ut co	1	-	-	-	-	-	3	-	-	-	-	1	-	-	-

m															
e 3															
0															
ut															
со	1	1	-	-	-	-	3	-	-	-	-	1	-	-	-
m															
e 4															
Co															
ur															
se															
Α	1	1	-	-	-	-	3	1	-	-	-	1	-	-	-
ve															
ra															
ge															

Course Unitization Plan

Unit No.	Syllabus Topics	Required Contact Hours	CLOs Addressed	References Used
	ENVIRONMENTAL CRISIS AND SUSTAINABLE DEVELOPMENT	3	1	1, 2
Unit No. 1	Need for environmental science studies, Fundamentals of ENV – Atmosphere, lithosphere, hydrosphere, biosphere. Global environmental crisis and its causes, Man-Environment relationship & interaction	2	1	1, 2
	Ecological footprint, Sustainable development	1	1	1, 2
	ECOSYSTEMS	5	2, 3	1, 3
	Ecosystem - Structure and functions of an ecosystem	1	2, 3	1, 3
	Energy flow in an ecosystem, biomass flow in an ecosystem, food chain and web, Ecological Succession	1	2, 3	1, 3
Unit No.	Ecological pyramid, Water cycle, Carbon cycle, Sulphur cycle, Nitrogen cycle	1	2, 3	1, 3
2	Forest ecosystems: tropical rain forest, coniferous forests, tundra forests, temperate forests, Grasslands and desert ecosystems	2	2, 3	1, 3
	Aquatic ecosystems: Freshwater zones, streams, rivers, state of rivers in India, wetlands, Zones in ocean, ocean activities, coastal zones, Estuaries, Mangroves	1	2, 3	1, 3

				And
	RENEWABLE AND NON-RENEWABLE RESOURCES	5	3, 4	1, 2
Unit	Energy resources: Global energy crisis, energy sources, energy needs, global energy consumption, Renewable and Non-renewable energy sources: Hydropower, Solar, tidal, wind, energy, Bioenergy, coal, natural gas	2	3, 4	1, 2
No. 3	Energy resources: fossil fuel vs renewable fuels, peak oil Conventional and unconventional oil, oil price determination	1	3, 4	1, 2
	Environmental implications of Energy use: India and world, Energy use pattern – national and global	1	3, 4	1, 2
	Water availability, Water for irrigation, water situation in India	1	3, 4	1, 2
	BIODIVERSITY	6	2, 3	1, 2, 3
	Significance of biodiversity, Current state of biodiversity: National and global, Causes of biodiversity loss	2	2, 3	1, 2, 3
Unit No.	Biological hotspots, aquatic biodiversity	1	2, 3	1, 2, 3
4	Endangered species and endemic species of India	1	2, 3	1, 2, 3
	Biodiversity conservation: Seed banks, botanical gardens, marine biodiversity protection, national and international efforts	2	2, 3	1, 2, 3
	Environmental Pollution and Control	11	1, 4	1, 2, 4
Unit No. 5	Types of Environmental Pollution Air pollution: Sources, effects, and control Air standards, Air pollution in India and the world Sources of air pollution, Outdoor & Indoor air pollution Point source, mobile, area source, Effects of air pollution: Smog, urban heat island, ozone layer depletion, acid rain, Controlling air pollution: Emission regulation, e-cars	2	1, 4	1, 2, 4
	Water pollution: Sources & effects, Water Quality standards, Water pollutants, eutrophication, thermal pollution, bio- magnification, Wastewater treatment,	2	1, 4	1, 2, 4

Mathada of water purification			
Methods of water purification			
Soil pollution: Sources, causes and effects Control of soil pollution: Air purging, phytoremediation, and bio-remediation	2	1, 4	1, 2, 4
Solid waste management, Types and sources of solid wastes, Hazardous waste, and electronic wastes, Recycling, and management of solid wastes (4Rs), Sanitary landfills and leachate management	2	1, 4	1, 2, 4
Noise pollution: Sources, effects, and control Air quality standards with respect to noise	1	1, 4	1, 2, 4
Introduction to Climate change: Impact of climate change, IPCC assessment, Carbon footprint, carbon sequestration, carbon trade, carbon credits, Kyoto protocol, Montreal protocol, Paris agreement	2	1, 4	1, 2, 4

Learning Assessment

		C	ontinu	ious Lo	earnin	g Asse	ssmen	ts (50 °	%)	End	
Bloom's Level of Cognitive Task		CLA-1 (10 %)		Mid-1 (15 %)		CLA-3 (10 %)		Mid-2 (15 %)		Semester Exam (50 %)	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level	Remember	30%		30%		30%	-	30%		30%	
1	Understand	40%	-	40%	-	20%		20%	-	40%	
Level	Apply	30%		30%		50%	-	50%		40%	
2	Analyse	-	-	-		-		-	-	-	-
Level	Evaluate										
3	Create	-	-	-	_	-	-	-	-	-	-
	Total	10	0%	10	0%	10	0%	10	0%	10	0%

Recommended Online Resources

- 1. R. Rajagopalan (2016). Environmental Studies (3rd edition), Oxford University Press. ISBN: 9780199459759
- 2. Deeksha Dave, S.S. Katewa (2012). Textbook of Environmental Studies (2nd edition), Cengage. ISBN: 9788131517604
- 3. W. Cunningham, M. Cunningham (2016). Principles of Environmental Science (8th Edition), McGraw-Hill. ISBN: 0078036070

- 4. APHA and AWWA (1999): Standard Methods for the Examination of Water and Wastewater. American Public Health Association (APHA), 20th Ed, Washington, D.C., USA. ISBN: 9780875532356
- 5. KL Rao (1979). India's water wealth. Orient Black Swan. ISBN: 8125007040
- Saadat, S., Rawtani, D., & Hussain, C. M. (2020). Environmental perspective of COVID-19. Science of The Total Environment, 138870. https://doi.org/10.1016/j.scitotenv.2020.138870

Course Designer

Dr Pankaj Pathak and Dr Shoji D Thottathil, Assistant Professor, Department of Environmental Science and Engineering, SRM University AP.

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Communicative English

Course Code	EGL 101	Course Category	Foundation Course (FIC)	L-T-P-C	3	0	0	3
Pre-Requisite		Co-Requisite		Progressive				
Course(s)		Course(s)		Course(s)				
Course	Literature	Professional /						
Offering	and	Licensing		NIL				
Department	Languages	Standards						

Course Objectives

To develop students' ability to effectively communicate in English through the enhancement of their speaking, listening, reading, and writing skills, enabling them to confidently engage in a variety of social and professional contexts.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Enhance students' ability to communicate clearly and confidently in various situations, including public speaking, group discussions, and interpersonal interactions	3	75%	75%
Outcome 2	Strengthen listening skills to understand and interpret spoken English in different accents and contexts, facilitating effective communication and comprehension.	3	75%	75%
Outcome 3	Foster students' reading and writing abilities, focusing on clarity, coherence, and appropriateness for different purposes such as academic writing, professional correspondence, and creative expression.	2	75%	75%
Outcome 4	Enrich students' vocabulary and improve their understanding and application of English grammar to express ideas accurately and appropriately in both spoken and written forms.	3	75%	75%

Course Outcomes / Course Learning Outcomes (CLOs)

	Program Learning Outcomes (PLO)														
CL Os	Scie ntifi c and Disc iplin ary Kno wled ge	Ana lyti cal Rea soni ng and Pro ble m Sol vin g	Crit ical and Ref lect ive Thi nki ng	Sci enti fic Rea soni ng and Des ign Thi nki ng	Re sea rch Rel ate d Ski Ils	M od er n To ols an d IC T Us ag e	Envi ronm ent and Susta inabi lity	Mor al, Mult icult ural and Ethi cal Awa rene ss	Indi vid ual and Tea mw ork Skil ls	Com munic ation Skills	Lea ders hip Rea dine ss Skil ls	Sel f- Dir ect ed an d Lif elo ng Le arn ing	P S O 1	P S O 2	P S O 3
Ou tco me 1		3	3					1	3	3	3	3	3	3	3
Ou tco me 2		1	1					1	3	3	3	3	2	2	2
Ou tco me 3		2	2					1	3	3	3	3	2	2	2
Ou tco me 4		1	3					1	3	3	3	3	1	1	1
Av g		1.7 5	2.2 5					1	3	3	3	3	2	2	2

Course Unitization Plan

Session	Description of Topic	Required Contact hours	CLOs addressed	References used
	UNIT-I	8		
1.	Course Introduction and overview: Communication: Definition and importance	2	1, 2, 3, 4	1 A, B, C
2.	Parts of Speech	2	1, 4	2 A, B
3.	es, Capitalization and Punctuations	2	1, 4	2 A, B
4.	inciples of Sentence Structure and Sentence parsing (S+V+O)	2	1, 4	2 A, B
	UNIT-II	8		

				Ar
5.	The Fundamentals of Speech (<i>Ethos, Pathos & Logos</i>)	2	1, 4	1 A, B, C
6.	b give a good Speech? (Rhetoric & Speech Delivery)	2	1, 4	1 J, 2 C
7.	Verbal and Nonverbal Communication	2	1, 4	1 A, B, C
8.	Fundamentals of Speech (Personal, Informative and Scientific)	2	1, 4	1 A, B, C
	UNIT- III	8		
9.	Listening Skills: Definition, Barriers, Steps to Overcome	1	2	1 D, 2 A, C
10.	Listening to Influence, Negotiate	3	2	1 D, 2 A, C
11.	Listening to Specific Information	1	2	1 D, 2 A, C
12.	Listening Comprehension practice, note taking and making	3	2	1 D, 2 A, C
13.				
	UNIT-IV	11		
14.	Reading to skim and scan	3	3	1 E, 2 A
15.	Read to Comprehend: (Predict, Answer Questions & Summarize)	4	3	1 E, 2 A
16.	Read to Understand: Referencing Skills for Academic Report Writing and Plagiarism	4	3	1 G, K
	UNIT – V	10		
17.	Write to interpret Data	2	1, 4	1 A, C, G,
18.	Write to Inform: (News, Emails, Notice, Agenda & Minutes	5	1, 4	1 F, G
19.	Resume and Cover Letter	2	1, 4	1 G, H, I
	Total Contact Hours	45		

1. Recommended Resources

- A. Beebe, Beebe and Ivy (2016). *Communication: Principles for a lifetime*. (6th Edition). Pearson Publishing.
 B. Myers and Anderson (2008). *The fundamentals of small group communication*. Sage Publication.
 - C. Shoba, L. (2017). Communicative English: A workbook. Cambridge University Press.
 - D. Leonardo, N. (2020) Active listening techniques: 30 practical tools to hone your communication skills. Rockridge Press
 - E. Williams, A.J. (2014) Reading comprehension: How to drastically improve your reading comprehension and speed reading fast!! (Reading Skills, Speed Reading)

F. Fenning, C. (2023). Effective emails: The secret to straightforward communication at work: 1 (Business Communication Skills): Sanage Publishing

G. Talbot, F. (2009). *How to write effective business English: The essential toolkit for composing powerful letters, emails and more, for today's business needs.* Kogan Page Publishers

- H. Yate, M. (2016). *Knock'em dead resumes: A killer resume gets more job interviews!* Simon and Schuster.
- I. Yate, M. J. (2018). *Ultimate cover letters: Master the art of writing the perfect cover letter to boost your employability* (Vol. 5). Kogan Page Publishers.
- J. Carnegie, D. (2013). The art of public speaking. Wyatt North Publishing, LLC.
 - K. Neville, C. (2016). *The complete guide to referencing and avoiding plagiarism*. McGraw-Hill Education (UK).
 - 2. Recommended Online Resources
 - $A.\ https://learnenglishteens.britishcouncil.org/$
 - B. https://www.bbc.co.uk/learningenglish/
 - C. https://www.ted.com/?geo=hi

Learning Assessment (Theory only and integrated course)

			Cont	tinuous L	earnin	g Assessi	nents (5	50%)		End	
Bloom's Level of Cognitive Task		CLA-1 (10%)		Mid-1 (15%)		CLA-2 (10%)		Mid-2 (15%)		Semester Exam (50%)	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Pr
	•										ac
Leve	Remember	30%		50%		30%		50%		30%	
11	Understand			5070		3070		30%		30%	
Leve	Apply	70%		500/		70%		50%		70%	
12	Analyse	/0%		50%		/0%		30%		/0%	
Leve	Evaluate										
13	Create	1									
	Total			100%		100%		100%		100%	

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

		Engineering	2 Physics					
Course Code	PHY 101	Course Category	FIC	L-T-P-C	2	0	0	2
Pre-Requisite Course(s)	NA	Co-Requisite Course(s)	PHY101L	Progressive Course(s)	N	4		
Course Offering Department	Physics	Professional / Licensing Standards						

Engineering Physics

Course Objectives

- 1. Objective 1: To understand the fundamental concepts of physics and their application in engineering.
- 2. Objective 2: To develop problem-solving skills through physics-based problems.
- 3. Objective 3: To enhance practical knowledge through laboratory experiments and real-world applications.
- 4. Objective 4: To foster analytical and critical thinking skills.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Demonstrate understanding of core physics principles in mechanics, waves, modern physics, and electromagnetism	2	75	70
2	Apply physics principles to analyse and solve engineering physics problems	3	70	65
3	Demonstrate problem-solving skills using mathematical tools	3	70	65
4	Interpret experimental observation that led to the progress of modern physics and optics	3	75	70

							Learnii		-			,			
C L Os	E n gi er in g K n o wl ed ge	P r o b l e m A n a l y s	D esi gn an d D ev el op m en t	A n a l y s i s , D e s i s i	M o d e r n T o o l a n d	So cie ty an d M ult ic ult ur al Sk ills	En vir on m en t an d Su sta in ab	M o r al , a n d E t h ic al	I n d iv i d a n d T e	Co m mu nic atio n Ski Ils	Pr oj ec t M an ag e m en t an d	S e l f - D i r e c t e d	P S O 1	P S O 2	P S O 3

		is		g n a n d R e s e a r c h	I C T U s a g e	ilit y	A w a r e n e ss	a w o r k S k il Is	Fi na nc e	a n L i f e L o n g L e a r n i n g			Andb
Ou tco me 1	2	2	1	1	1		1	2		2	1	1	1
Ou tco me 2	2	3	2	2	2		2	2		2	2	1	1
Ou tco me 3	2	3	2	2	2		2	2		2	2	1	1
Ou tco me 4	2	2	2	2	1		2	2		2	2	1	2
Co ur se Av er ag e	2.0	2.5	1.8	1.8	1.5		1.8	2.0		2.0	1. 8	1. 0	1. 3

Course Unitization Plan: Theory

Unit No.	Syllabus Topics	Required Contact Hours	CLOs Addressed	References Used
	Introduction	1	1	1, 3
	Newton's laws of mechanics, Free body force diagram	1	1, 2, 3	1, 3
Unit No.	Momentum and Impulse, Conservation of linear momentum	1	1, 2, 3	1, 3
1	Work-Kinetic Energy Theorem and related problems	1	1, 2, 3	1, 3
	Conservation of mechanical energy: Worked out problems	1	1, 2, 3	1, 3
	Elastic properties of solids, Stress-strain relationship, elastic constants, and their significance	1	1	1, 2

Unit No. 2Focus on Maxwell's Equation I: Discuss lines of force and Electrostatic flux, Introduce Gauss's law (differential and integral form)111, 4No. 2Application of Gauss Law: ES field due to infinite wire and sheet.11, 2, 31, 4No. 2Electrostatic field due to conducting and insulating sphere.11, 2, 31, 4Concept of Electrostatic Fotential and Potential Energy. Inter-relation with electrostatic field.111, 4Capacitor and Capacitance:111, 44Capacitance of a parallel plate capacitor.11, 2, 31, 4Introduce Biot-Savart Law as an allernative approach to calculate magnetic field.111, 4Cocus on Maxwell's Equation IV: Discuss Ampere's circuital law.11, 2, 31, 4Cocus on Maxwell's Equation IV: Discuss Ampere's circuital law.11, 2, 31, 4Focus on Maxwell's Equation IV: Discuss Ampere's circuital law.11, 41, 4Obenoid using Ampere's Law.11, 41, 4Focus on Maxwell's Equation IV: Discuss Ampere's circuital law.11, 2, 31, 4Vinit No. 4Focus on Maxwell's Equation IV: Discuss Ampere's circuital law.11, 2, 31, 4Intervent Equation III: Lenz's Law and Faraday's law: Induced EMF and Current Describe Maxwell's Equation III: Lenz's Law and Faraday's law: Induced EMF and Current Describe Maxwell's Equations as the foundation of electro-magnetism. Derive differential forms starting from Integral forms. Discuss Physic					
Unit No. 2Application of Gauss Law: ES field due to infinite wire and sheet.11, 2, 31, 4Electrostatic field due to conducting and insulating sphere.11, 2, 31, 4Concept of Electrostatic Potential and Potential Energy. Inter-relation with electrostatic field.1111, 4Capacitor and Capacitance:111, 41, 41Capacitor and Capacitance:111, 41, 4Capacitor and Capacitance:111, 41, 4Capacitar co a parallel plate capacitor.111, 41, 4Calculate Magnetic field.111, 41, 4Calculate Magnetic field due to finite current element using Biot Savart Law.11, 2, 31, 4Focus on Maxwell's Equation IV: Discuss Ampere's circuital law.11, 2, 31, 4Focus on Maxwell's Equation III: Lenz's Law and Faraday's law: Induced EMF and Current11, 41, 4Describe Maxwell Equations as the foundation of electro-magnetism. Derive differential forms starting refraction111, 2Mint No.22111, 21, 2Pase Difference and Path Difference111, 21, 2Phase Difference and Path Difference111, 21, 2Nettor's Ring11, 21, 21, 21, 2The Michelson Interferometer11, 2, 3, 41, 21, 2Discussion on failure of classical laws to explain <td></td> <td>force and Electrostatic flux, Introduce Gauss's law</td> <td>1</td> <td>1</td> <td>1, 4</td>		force and Electrostatic flux, Introduce Gauss's law	1	1	1, 4
No. 2Electrostatic field due to conducting and insulating sphere.11, 2, 31, 4Concept of Electrostatic Potential and Potential Energy. Inter-relation with electrostatic field.111, 4Capacitor and Capacitance:111, 41, 4Calculate magnetic field111, 41, 4Calculate magnetic field due to finite current element 	T	Application of Gauss Law: ES field due to infinite	1	1, 2, 3	1, 4
Unit No. 4Concept of Electrostatic Potential and Potential Energy. Inter-relation with electrostatic field.111, 4Capacitance of a parallel plate capacitor.11, 2, 31, 4Capacitance of a parallel plate capacitor.11, 2, 31, 4Introduce Biot-Savart Law as an alternative approach to calculate Magnetic field due to finite current element using Biot Savart Law.11, 2, 31, 4Calculate Magnetic field due to finite current element using Biot Savart Law.11, 2, 31, 4Focus on Maxwell's Equation IV: Discuss Ampere's circuital law.11, 2, 31, 4Calculate Magnetic field due to Infinite wire and Solenoid using Ampere's Law.11, 2, 31, 4Focus on Maxwell's Equation III: Lenz's Law and Faraday's law: Induced EMF and Current111, 41, 4Describe Maxwell's Equation III: Lenz's Law and Forus on Maxwell's Equation III: Lenz's Law and Forus not Maxwell's Equation III: Lenz's Law and Faraday's law: Induced EMF and Current111, 2Geometrical & Wave Optics: Laws of reflection and refraction111, 2MaxConcept of Electromagnetic waves & EMW Spectra111, 2MaxConcept of Interference111, 2No.11, 2, 3, 41, 21, 2No.11, 2, 3, 41, 21Max11, 21, 21, 2Max11, 21, 21Max11, 21, 21 <td>No.</td> <td>• •</td> <td>1</td> <td>1, 2, 3</td> <td>1, 4</td>	No.	• •	1	1, 2, 3	1, 4
Capacitance of a parallel plate capacitor. 1 1, 2, 3 1, 4 Introduce Biot-Savart Law as an alternative approach to calculate magnetic field. 1 1 1, 4 Calculate Magnetic field due to finite current element using Biot Savart Law. 1 1, 2, 3 1, 4 Focus on Maxwell's Equation IV: Discuss Ampere's incruital law. 1 1, 2, 3 1, 4 Solenoid using Ampere's Law. 1 1, 2, 3 1, 4 Focus on Maxwell's Equation III: Lenz's Law and Faraday's law: Induced EMF and Current 1 1, 4 1, 4 Describe Maxwell Equations as the foundation of electro-magnetism. Derive differential forms starting from Integral forms. Discuss Physical Significance. 1 1 1, 2 Mint Concept of Electromagnetic waves & EMW Spectra 1 1, 2 1, 2 Geometrical & Wave Optics: Laws of reflection and refraction 1 1, 2 1, 2 Vinit Newton's Ring 1 1, 2 1, 2 The Michelson Interferometer 1 1, 2 1, 2 1, 2 Newton's Ring 1 1, 2 1, 2 1, 2 1, 2 Hase Difference	-		1	1	1, 4
Unit No. 3Introduce Biot-Savart Law as an alternative approach to calculate magnetic field.111, 4Calculate Magnetic field due to finite current element using Biot Savart Law.11, 2, 31, 4Focus on Maxwell's Equation IV: Discuss Ampere's circuital law.11, 2, 31, 4No. 3Calculate Magnetic field due to Infinite wire and Solenoid using Ampere's Law.11, 2, 31, 4Focus on Maxwell's Equation III: Lenz's Law and Faraday's law: Induced EMF and Current11, 41, 4Describe Maxwell Equations as the foundation of electro-magnetism. Derive differential forms starting from Integral forms. Discuss Physical Significance.111, 2Concept of Electromagnetic waves & EMW Spectra111, 2Geometrical & Wave Optics: Laws of reflection and refraction111, 2No. 4Michelson Interference111, 2Newton's Ring11, 21, 2The Michelson Interferometer11, 2, 3, 41, 2Newton's Ring11, 21, 2Discussion on failure of classical laws to explain Black Body Radiation, and concept of Planck's Hypothesis11, 2, 3, 41, 2What is Light? Photon and Overview on Planck Constant11, 2, 3, 41, 2Photoelectric effect – Concept and Experimental Setup11, 2, 3, 41, 2Photoelectric effect – Intensity vs Current, Frequency vs Kinetic Energy, the drawback of Wave theory to explain Photoelectric effect1 <t< td=""><td></td><td>Capacitor and Capacitance:</td><td>1</td><td>1</td><td>1, 4</td></t<>		Capacitor and Capacitance:	1	1	1, 4
Unit No. 3to calculate magnetic field.1111, 4Vinit No. 3Focus on Maxwell's Equation IV: Discuss Ampere's circuital law.11, 2, 31, 4Vinit No. 3Calculate Magnetic field due to Infinite wire and Solenoid using Ampere's Law.11, 2, 31, 4Focus on Maxwell's Equation III: Lenz's Law and Faraday's law: Induced EMF and Current11, 41, 4Describe Maxwell Equations as the foundation of electro-magnetism. Derive differential forms starting from Integral forms. Discuss Physical Significance.111, 2Concept of Electromagnetic waves & EMW Spectra111, 22Concept of Interference111, 21, 2Concept of Interference111, 21, 2Phase Difference and Path Difference111, 21, 2Newton's Ring11, 21, 21, 2The Michelson Interferometer11, 2, 3, 41, 2Unit No. 4Black Body Radiation; Wien's displacement law11, 2, 3, 41, 2Hypothesis11, 2, 3, 41, 21, 2Photoelectric effect – Concept and Experimental Setup11, 2, 3, 41, 2Photoelectric effect – Intensity vs Current, Frequency vs Kinetic Energy, the drawback of Wave theory to explain Photoelectric effect11, 2, 3, 41, 2		Capacitance of a parallel plate capacitor.	1	1, 2, 3	1, 4
Unit No. 3using Biot Savart Law.111, 2, 31, 4Focus on Maxwell's Equation IV: Discuss Ampere's circuital law.111, 4No. 3Calculate Magnetic field due to Infinite wire and Solenoid using Ampere's Law.11, 2, 31, 4Focus on Maxwell's Equation III: Lenz's Law and Faraday's law: Induced EMF and Current11, 41, 4Describe Maxwell Equations as the foundation of electro-magnetism. Derive differential forms starting from Integral forms. Discuss Physical Significance.111, 2Concept of Electromagnetic waves & EMW Spectra111, 22Concept of Interference111, 21Phase Difference and Path Difference111, 21, 2Newton's Ring11, 21, 21, 2The Michelson Interferometer111, 21, 2Discussion on failure of classical laws to explain Black Body Radiation; Wien's displacement law11, 2, 3, 41, 2What is Light? Photon and Overview on Planck Constant111, 2, 3, 41, 2Photoelectric effect – Concept and Experimental Setup11, 2, 3, 41, 22Photoelectric effect – Concept and Experimental Setup11, 2, 3, 41, 22Photoelectric effect – Intensity vs Current, Frequency vs Kinetic Energy, the drawback of Wave theory to explain Photoelectric effect11, 2, 3, 41, 2			1	1	1, 4
Unit No. 3circuital law.11			1	1, 2, 3	1, 4
3Solenoid using Ampere's Law.11, 2, 31, 4Focus on Maxwell's Equation III: Lenz's Law and Faraday's law: Induced EMF and Current11, 41, 4Describe Maxwell Equations as the foundation of electro-magnetism. Derive differential forms starting from Integral forms. Discuss Physical Significance.111, 4Unit No.Concept of Electromagnetic waves & EMW Spectra111, 2Geometrical & Wave Optics: Laws of reflection and refraction111, 2Metton's Ring111, 21, 2Newton's Ring11, 21, 2The Michelson Interferometer11, 2, 3, 41, 2Black Body Radiation; Wien's displacement law11, 41, 2Unit No.Black Body Radiation, and concept of Planck's Hypothesis111, 2, 3, 41, 2Unit No.Photoelectric effect – Concept and Experimental Setup11, 2, 3, 41, 2Photoelectric effect – Intensity vs Current, Frequency vs Kinetic Energy, the drawback of Wave theory to explain Photoelectric effect11, 2, 3, 41, 2	Unit		1	1	1, 4
Faraday's law: Induced EMF and Current11, 41, 4Describe Maxwell Equations as the foundation of electro-magnetism. Derive differential forms starting from Integral forms. Discuss Physical Significance.111, 4Unit No.Concept of Electromagnetic waves & EMW Spectra1111, 2Geometrical & Wave Optics: Laws of reflection and refraction1111, 2Concept of Interference111, 22Phase Difference and Path Difference111, 21, 2Newton's Ring11, 2, 3, 41, 22The Michelson Interferometer11, 2, 3, 41, 22Discussion on failure of classical laws to explain Black Body Radiation, and concept of Planck's Hypothesis11, 41, 2What is Light? Photon and Overview on Planck Constant111, 2, 3, 41, 2Photoelectric effect – Concept and Experimental Setup11, 2, 3, 41, 2Photoelectric effect – Intensity vs Current, Frequency vs Kinetic Energy, the drawback of Wave theory to explain Photoelectric effect11, 2, 3, 41, 2		-	1	1, 2, 3	1, 4
Unit No.electro-magnetism. Derive differential forms starting from Integral forms. Discuss Physical Significance.111, 4Unit No.Concept of Electromagnetic waves & EMW Spectra111, 2Geometrical & Wave Optics: Laws of reflection and refraction111, 2Geometrical & Wave Optics: Laws of reflection and refraction111, 2Concept of Interference111, 2Phase Difference and Path Difference111, 2Newton's Ring11, 2, 3, 41, 2The Michelson Interferometer11, 2, 3, 41, 2Discussion on failure of classical laws to explain Black Body Radiation, and concept of Planck's Hypothesis11, 41, 2What is Light? Photon and Overview on Planck Constant11, 2, 3, 41, 21Photoelectric effect – Concept and Experimental Setup11, 2, 3, 41, 21No. SPhotoelectric effect – Intensity vs Current, Frequency vs Kinetic Energy, the drawback of Wave theory to explain Photoelectric effect11, 2, 3, 41, 2			1	1, 4	1, 4
Unit No. 4Geometrical & Wave Optics: Laws of reflection and refraction111, 2Vinit No. 4Concept of Interference111, 2Phase Difference and Path Difference111, 2Newton's Ring11, 21, 2The Michelson Interferometer11, 2, 3, 41, 2Black Body Radiation; Wien's displacement law11, 21, 2Discussion on failure of classical laws to explain Black Body Radiation, and concept of Planck's Hypothesis11, 41, 2What is Light? Photon and Overview on Planck Constant11, 2, 3, 41, 2Photoelectric effect – Concept and Experimental Setup11, 2, 3, 41, 2Photoelectric effect – Intensity vs Current, Frequency vs Kinetic Energy, the drawback of Wave theory to explain Photoelectric effect11, 2, 3, 41, 2		electro-magnetism. Derive differential forms starting	1	1	1, 4
Unit No. 4refraction111, 2Concept of Interference111, 2Phase Difference and Path Difference111, 2Newton's Ring11, 21, 2The Michelson Interferometer11, 2, 3, 41, 2Black Body Radiation; Wien's displacement law11, 21, 2Discussion on failure of classical laws to explain Black Body Radiation, and concept of Planck's Hypothesis11, 41, 2What is Light? Photon and Overview on Planck Constant111, 2, 3, 41, 2Photoelectric effect – Concept and Experimental Setup11, 2, 3, 41, 2Photoelectric effect – Intensity vs Current, Frequency vs Kinetic Energy, the drawback of Wave theory to explain Photoelectric effect11, 2, 3, 41, 2		Concept of Electromagnetic waves & EMW Spectra	1	1	1, 2
No. 4Concept of Interference111, 2Phase Difference and Path Difference111, 2Newton's Ring11, 21, 2The Michelson Interferometer11, 2, 3, 41, 2The Michelson Interferometer11, 2, 3, 41, 2Black Body Radiation; Wien's displacement law11, 21, 2Discussion on failure of classical laws to explain Black Body Radiation, and concept of Planck's11, 41, 2What is Light? Photon and Overview on Planck Constant111, 2, 3, 41, 2Photoelectric effect – Concept and Experimental Setup11, 2, 3, 41, 2Unit No. 5Photoelectric effect – Intensity vs Current, Frequency vs Kinetic Energy, the drawback of Wave theory to explain Photoelectric effect11, 2, 3, 41, 2	Tinit		1	1	1, 2
4Phase Difference and Path Difference111, 2Newton's Ring11, 21, 2The Michelson Interferometer11, 2, 3, 41, 2Black Body Radiation; Wien's displacement law11, 21, 2Discussion on failure of classical laws to explain Black Body Radiation, and concept of Planck's Hypothesis11, 41, 2What is Light? Photon and Overview on Planck Constant111, 21, 2Photoelectric effect – Concept and Experimental Setup11, 2, 3, 41, 2Photoelectric effect – Intensity vs Current, Frequency vs Kinetic Energy, the drawback of Wave theory to explain Photoelectric effect11, 2, 3, 41, 2		Concept of Interference	1	1	1, 2
The Michelson Interferometer11, 2, 3, 41, 2Black Body Radiation; Wien's displacement law11, 21, 2Discussion on failure of classical laws to explain Black Body Radiation, and concept of Planck's11, 41, 2What is Light? Photon and Overview on Planck Constant111, 2, 3, 41, 2Photoelectric effect – Concept and Experimental Setup11, 2, 3, 41, 2Unit No. 5Photoelectric effect – Intensity vs Current, Frequency vs Kinetic Energy, the drawback of Wave theory to explain Photoelectric effect11, 2, 3, 41, 2		Phase Difference and Path Difference	1	1	1, 2
Black Body Radiation; Wien's displacement law11, 21, 2Discussion on failure of classical laws to explain Black Body Radiation, and concept of Planck's11, 41, 2What is Light? Photon and Overview on Planck Constant111, 2Photoelectric effect – Concept and Experimental Setup11, 2, 3, 41, 2Photoelectric effect – Intensity vs Current, Frequency vs Kinetic Energy, the drawback of Wave theory to explain Photoelectric effect11, 2, 3, 41, 2		Newton's Ring	1	1, 2	1, 2
Discussion on failure of classical laws to explain Black Body Radiation, and concept of Planck's Hypothesis11, 41, 2What is Light? Photon and Overview on Planck Constant111, 2Photoelectric effect – Concept and Experimental Setup11, 2, 3, 41, 2Unit No. 5Photoelectric effect – Intensity vs Current, Frequency vs Kinetic Energy, the drawback of Wave theory to explain Photoelectric effect11, 2, 3, 41, 2		The Michelson Interferometer	1	1, 2, 3, 4	1, 2
Black Body Radiation, and concept of Planck's11, 41, 2Hypothesis11, 41, 2What is Light? Photon and Overview on Planck Constant111, 2Photoelectric effect – Concept and Experimental Setup11, 2, 3, 41, 2Photoelectric effect – Intensity vs Current, Frequency vs Kinetic Energy, the drawback of Wave theory to explain Photoelectric effect11, 2, 3, 41, 2		Black Body Radiation; Wien's displacement law	1	1, 2	1, 2
Constant111, 2Photoelectric effect – Concept and Experimental Setup11, 2, 3, 41, 2Unit No. 5Photoelectric effect – Intensity vs Current, Frequency vs Kinetic Energy, the drawback of Wave theory to explain Photoelectric effect11, 2, 3, 41, 2		Black Body Radiation, and concept of Planck's	1	1, 4	1, 2
Unit No. 5Setup11, 2, 3, 41, 2Unit No. s Explain Photoelectric effectIntensity vs Current, Frequency vs Kinetic Energy, the drawback of Wave theory to explain Photoelectric effect11, 2, 3, 41, 2		•	1	1	1, 2
No.vs Kinetic Energy, the drawback of Wave theory to11, 2, 3, 41, 25explain Photoelectric effect11, 2, 3, 41, 2			1	1, 2, 3, 4	1, 2
	No.	vs Kinetic Energy, the drawback of Wave theory to	1	1, 2, 3, 4	1, 2
	-	Wave properties of particle: De Broglie wave	1	1, 4	1, 2

Learning Assessment

	С	ontinu	ous Lea	rning	Asses	ssment	s (50 %)	En	
Bloom's Level of Cognitive Task	CLA (15		CLA-2 (15 %)		CLA-3 (_%)		Mid Term (20 %)		Semester Exam (50 %)	
Lask	Th	Pra c	Th	Pra c	T h	Pra c	Th	Pra c	Th	Pra c

Lev	Rememb er	20%	10%	10%	20%	
el 1	Understa nd	40%	30%	30%	40%	
Lev	Apply	30%	40%	40%	30%	
el 2	Analyse	10%	20%	20%	10%	
Lev	Evaluate					
el 3	Create					
	Total	100	100	100	100	
		%	%	%	%	

Recommended Resources

- 1. Serway, R. A., & Jewett, J. W. (2017). Physics for Scientists and Engineers with Modern Physics (9th ed.). Cengage India Private Limited.
- 2. Young, H. D., Freedman, R. A., & Ford, L. C. (2018). University Physics with Modern Physics with Mastering Physics (12th ed.). Pearson.

Recommended Online Resources

3. Massachusetts Institute of Technology: OpenCourseWare. (2023). Physics I: Classical Mechanics. Retrieved from Massachusetts Institute of Technology: MIT OpenCourseWare https://ocw.mit.edu/courses/physics/8-01x-classical-mechanics-fall-2023/

4. Massachusetts Institute of Technology: OpenCourseWare. (2023). Physics II: Electricity and Magnetism. Retrieved from Massachusetts Institute of Technology: MIT OpenCourseWare https://ocw.mit.edu/courses/physics/8-02x-electricity-and-magnetism-fall-2023/

Course Designers

a. Dr. Sidhartha Ghosh, Assistant Professor, Department of Physics, SRM University – AP, Andhra Pradesh.

b. Dr. Jatis Kumar Dash, Assistant Professor, Department of Physics, SRM University – AP, Andhra Pradesh.

c. Dr. Pranab Mandal, Assistant Professor & Faculty coordinator, Department of Physics. SRM University – AP, Andhra Pradesh.

d. Prof. M. S. Ramachandra Rao, Professor, Department of Physics, Indian Institute of Technology, Madras.

e. Prof. D. Narayana Rao, Raja Ramanna Fellow, University of Hyderabad, Hyderabad.

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Engineering Physics Lab

Course Code	PHY 101L	Course Category	FIC	L-T-P-C	2	0	0	2
Pre-Requisite Course(s)	NA	Co-Requisite Course(s)	PHY101	Progressive Course(s)	NA	4		
Course Offering Department	Physics	Professional / Licensing Standards						

Course Objectives

Objective 1: Operate physics equipment and measurement tools following safety protocols.

Objective 2: Determine the physical parameters of mechanics, electromagnetism, modern physics and optics.

Objective 3: Collect experimental data, analyse, and interpret.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Understand experimental set-up and equipment operation	2	75	70
2	Demonstrate accurate data collection using modern equipment	3	70	65
3	Evaluate experimental data to interpret and explain the underlying physics concepts	3	70	65
4	Determine physical properties and verify physics laws	3	70	65

					P	rogram	Learnir	ng Outo	comes (PLO)					
C L Os	En gi ne er in gKn o wl ed ge	P r o b l e m A n a l y s i s	D esi gn an d D ev el op m en t	A n a l y s i s , D e s i g n	M o d e r n T o o l a n d I C	So cie ty an d M ult ic ult ur al Sk ills	En vir on en t an d Su sta in ab ilit y	M or al , a t h ic al A w	I n d iv i a a n d T e a m	Co m mu nic atio n Ski Ils	Pr oj ec t M an ag e m en t an d Fi na	S e l f - D i r e c t e d a n	P S O 1	P S O 2	P S O 3

				a n d R e s e a r c h	T U s a g e		a r e n e ss	w o r k S k il ls	nc e	d i f e L o n g L e a r n i n g			
Ou tco me 1	2	3	2	2	2		2	2		2	1	1	1
Ou tco me 2	2	3	2	2	2		2	2		2	2	1	1
Ou tco me 3	2	3	2	2	2		2	2		2	2	1	1
Ou tco me 4	2	3	2	2	3		2	3		2	2	1	2
Co ur se Av er ag e	2.0	3.0	2.0	2.0	2.3		2.0	2.3		2.0	1. 8	1. 0	1. 3

Course Unitization Plan: Laboratory

Exp No.	Syllabus Topics	Required Contact Hours	CLOs Addressed	References Used
1	Moment of inertia of a flywheel	2	1,2,3,4	1,2
2	Hooke's law and determine spring constant for a given spring	2	1,2,3,4	1,2
3	Compound Pendulum: Acceleration due to gravity and radius of gyration of the given pendulum			
	To determine the rigidity modulus of steel wire by torsional Pendulum [Optional]	4	1,2,3,4	1,2
	To calculate Young's modulus of a given material by deflection method [Optional]			

				And
4	Faraday law & Induced E.M.F: Measurement of the induced voltage and calculation of the magnetic flux induced by a falling magnet To study the B-H curve of the given material and the permeability curve of the given material. [Optional]	2	1,2,3,4	1,2
5	Biot-savart law: To study the dependence of magnetic field on the current and magnetic field along the axis of a current carrying circular loopHall Effect: Determination of type of semiconductor and carrier concentration in a given semiconductor [optional]Magnetic field in Helmholtz coil [Optional] a. To investigate the spatial distribution of magnetic field between coils and determine the spacing for uniform magnetic field. a. To demonstrate the superposition of	2	1,2,3,4	1,2
	the magnetic fields of the two individual coils.To determine the dielectric constant of air using dielectric constant kit.			
6	Measurement of Resistivity of a semiconductor using Four probes [Optional]	4	1,2,3,4	1,2
7	Michelson interferometer kit with diode laser Resolving power of A Telescope [Optional] Balmer Series and Rydberg constant [Optional]	4	1,2,3,4	1,2
8	He-Ne laser kit: Optical Interference and Diffraction Solar cell characteristics [Optional] Frank Hertz Experiment [Optional]	4	1,2,3,4	1,2
9	Particle size measurement	2	1,2,3,4	1,2
10	Verification of Stefan's Law Measurement of specific heat capacity of any given material [optional]	4	1,2,3,4	1,2

Learning Assessment

Bloom's Level of	Continuo	us Learning A	ssessment	s (50 %)	End
Cognitive Task	CLA-1	CLA-2	CLA-3 (%)	Mid Term -	Semester

		Experimen ts (20 %)		Bo Obso N	ecord ook/ ervatio n Jote 0 %)			E	odel xam 0 %)		im (50 %)
		Th	Prac	Th	Prac	T h	Pra c	T h	Prac	T h	Prac
Leve	Remembe r				20%				10%		
11	Understan d				20%				20%		
Leve	Apply		20%		20%				10%		20%
12	Analyse		20%		40%				20%		30%
Leve	Evaluate		60%						40%		50%
13	Create										
	Total		100%		100%				100 %		100 %

Recommended Resources

1. Shukla, R. K., & Srivastava, A. (2006). *Practical Physics*. New Delhi: New Age International (P) Limited Publishers.

Recommended Online Resources

 Department of Physics, SRM University AP. Engineering Physics lab manuals. Retrieved from Engineering Physics Lab (FIC102) <u>https://srmap.edu.in/seas/physics-teaching-lab/</u>

Course Designers

- a. Dr. Sidhartha Ghosh, Assistant Professor, Department of Physics, SRM University AP, Andhra Pradesh.
- b. Dr. Jatis Kumar Dash, Assistant Professor, Department of Physics, SRM University AP, Andhra Pradesh.
- c. Dr. Pranab Mandal, Assistant Professor & Faculty coordinator, Department of Physics. SRM University AP, Andhra Pradesh.
- d. Prof. M. S. Ramachandra Rao, Professor, Department of Physics, Indian Institute of Technology, Madras.
- e. Prof. D. Narayana Rao, Raja Ramanna Fellow, University of Hyderabad, Hyderabad.

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Indi	Name of the Course. Chemistry for Engineers										
Course Code	CHE 103	Course Category	FIC L-T-P-C	2002							
Pre-Requisite Course(s)		Co-Requisite Course(s)	NIL Progressive Course(s)	NA							
Course Offering Department	Department of Chemistry	Professional / Licensing Standards	NA								

Name of the Course: Chemistry for Engineers

Course Objectives

- 1. To distinguish the types of bonding and can predict the structure, electronic and magnetic properties of small molecules and to learn the type of chemical reactions based on the reaction energetics and kinetics.
- 2. To gain in-depth knowledge about crystalline materials and to understand the types of polymers and familiar with industrial applications.
- 3. To learn the formation of proper electrochemical cell and their real-world applications.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Understand the theories of chemical bonding to predict molecular shapes and properties	2	80	70
2	Apply phase diagrams and thermochemical data for physical and chemical processes	3	75	65
3	Understand the crystallographic concepts to evaluate material properties	2	80	70
4	Apply the concepts of polymer science and electrochemistry	3	80	75

					Pr	ogram	Learnin	g Outo	comes	(PLO)					
	Ε	Р	D	Α	Μ	S	Ε	Μ	Ι	Со	Pr	S	Р	Р	Р
	n	r	es	n	0	ос	nv	0	n	m	oj	e	S	S	S
	gi	0	ig	а	d	ie	ir	r	d	m	ec	1	0	0	0
6	n	b	n	1	e	ty	on	а	i	un	t	f	1	2	3
C	e	1	an	у	r	а	m	1,	v	ica	Μ	-			
L	er	e	d	s	n	n	en	а	i	tio	а	D			
Os	i	m	D	i	Т	d	t	n	d	n	n	i			
	n	Α	ev	s	0	Μ	an	d	u	Sk	a	r			
	g	n	el	,	0	ul	d	E	а	ills	g	e			
	K	а	0	D	1	ti	S	t	1		e	С			
	n	1	р	e	а	cu	us	h	а		m	t			
	0	У	m	s	n	lt	tai	i	n		e	e			

	w le g e	s i s	en t	i g n a n d R e s e a r c h	d I C T U s a g e	ur al S ki 11 s	na bi lit y	c a l A w a r e s s s	d T e a m w o r k S k il 1 s		nt a n a n ce	d a n d L i f e 1 o n g L e a r n i n g L			Andh
O ut co m e 1	1	1	2	2	1	1	-	-	1	1	-	1	2	1	1
O ut co m e 2	1	2	2	2	1	1	-	-	1	1	-	1	2	2	1
O ut co m e 3	1	1	1	2	1	1	-	-	1	1	-	1	1	1	2
O ut co m e 4	1	1	3	2	1	1	-	-	1	1	-	1	1	1	1
Co ur se A ve ra ge	1	1	2	2	1	1	-	-	1	1	-	1	1	1	1

Course Unitization Plan - Theory

Unit No.	Syllabus Topics	Required Contact Hours	CLOs Addressed	References Used
Unit No.	Ionic, covalent, and metallic bonds, Theories of bonding: Valence bond theory, nature of covalent bond, sigma (σ) bond, Pi (π) bond.	2	1	1,2

1				
	Hydrogen bonding, Hybridization: Types of hybridization, sp, sp2, sp3, sp3d, d2sp3.	1	1	1,2
	Shapes of molecules (VSEPR Theory): BeCl2, CO2, BF3, H2O, NH3, CH4, PCl5, XeF2, SF6, XeF4.	2	1	1,2
	Molecular orbital theory: Linear combination of atomic orbitals (LCAO Method)	1	1	1,2
	Phase rule, Definition of the terms used in phase rule with examples	2	2	1,2
Unit No.	Application of phase rule to water system water system	1	2	1,2
2	Basics of thermochemistry: Standard terms in thermochemistry and their significance.	2	2	1,2
	Kinetics: Order and molecularity of reactions, Zero order and first order reactions	1	2	1,2
	Crystal structure: crystal systems, Properties of cubic crystals, Bragg's Law, Bravais lattices	1	3	1,2
Unit No.	Miller indices	1	3	1,2
3	Point defects	1	3	1,2
	Band theory: metals, insulators, and semiconductors.	3	3	1,2
	Classification of polymers	2	4	1,2,3
Unit	Properties of polymers: Tg, Tacticity, Molecular weight, weight average.	1	4	1,2,3
No. 4	Degradation of polymer, Common Polymers: Elastomer, Conducting polymer, biodegradable polymer.	2	4	1,2,3
	Demineralization of water and Zeolite process	1	4	1,2,3
	Electrochemical cells	1	4	1,2
Unit No.	Primary and secondary cells	2	4	1,2
5	Lead-acid battery	1	4	1,2
	Li+ batteries and Fuel cells	2	4	1,2

Learning Assessment - Theory

		Contii		rning Ass 50%)	sessments	End	
-	om's Level of gnitive Task	CLA-1 (15%)	CLA-2 (10%)	CLA-3 (10%)	Mid Term (15%)	Semeste Exam (50	
		Th	Th	Th	Th	Th	
Level	Remember	50%	40%	40%	40%	40%	
1	Understand						
Level	Apply	40%	50%	40%	40%	40%	
2	Analyse						
Level	Evaluate	10%	10%	20%	20%	20%	
3	3 Create						
	Total	100%	100%	100%	100%	100%	

Recommended Resources

- 1. A. Bahl, B.S. Bahl, G.D. Tuli, Essentials of Physical Chemistry, (2016), S Chand Publishing Company
- 2. T. Jain, Y. Jain, Engineering Chemistry, 16th Edition (2017), Dhanpat Rai Publication Company
- 3. V. R. Gowariker, N. V. Viswanathan, J. Sreedhar, Polymer Science, New Age International, 1986. ISBN: 0-85226-307-4

Recommended Online Resources

- 1. B. R. Puri, L. R. Sharma & M. S. Pathania, Principles of Physical Chemistry, 46th Edition (2013), Vishal Publication Company
- 2. F.W. Billmeyer, Text Book of Polymer Science, 3rd Ed., John Wiley & Sons, New York, 2003.
- 3. A.J.Bard and L.R. Faulkner, Electrochemical methods –Fundamentals and Applications,,2nd Ed., John Wiley and Sons, 2001.
- 4. D.M. Adams, Inorganic Solids, An introduction to concepts in solid state structural chemistry. J. Willey & Sons, 1974.

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

	i tunie of the et	Suise. Chemistry for		<u>, , , , , , , , , , , , , , , , , , , </u>				
Course	CHE 103 L	Course Category	Core	L-T-P-C				
Code			(Physical		0 0 2		2	1
			Chemistry)					
Pre-	NIL	Co-Requisite	NIL	Progressive		Ν	A	
Requisite		Course(s)		Course(s)				
Course(s)								
Course	Department of	Professional/		NA				
Offering	Chemistry	Licensing						
Department	5	Standards						

Name of the Course: Chemistry for Engineers Laboratory

Course Objectives

- 1. To choose the appropriate indicator and other methods for a given acid base titration and may also predict the pH and pOH of the given solutions.
- 2. To Explain the principles and working of electrochemistry.
- 3. To learn the principles of complex formation in solution.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's	Expected Proficiency	Expected Attainment
003	The the the of the course the realiter will be able to	Level	Percentage	Percentage
1	Understand the conductometric and pH meter techniques for titration analysis	2	80	70
2	Analyse and standardize solutions using redox and complexometric titrations	4	75	65
3	Analyse and quantify metal ions using potentiometry	4	80	70

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

		Program Learning Outcomes (PLO)													
CLOs	Engineering Knowledge	Problem Analysis	Design and Development	Analysis, Design and Research	Modern Tool and ICT Usage	Society and Multicultural Skills	Environment and Sustainability	Moral, and Ethical Awareness	Individual and Teamwork Skills	Communication Skills	Project Management and Finance	Self-Directed and Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	1	1	2	2	1	1	-	-	1	1	-	1	2	1	1

													-	Andhra l	Pradesh
Outcome 2	1	2	2	2	1	1	-	-	1	1	-	1	2	2	1
Outcome 3	1	1	1	2	1	1	-	-	1	1	-	1	1	1	2
Course Average	1	1	2	2	1	1	-	-	1	1	-	1	1	1	1

Course Unitization Plan - Laboratory

Exp No.	Experiment Name	Required Contact Hours	CLOs Addressed	References Used
1	Volumetric titration of HCl vs NaOH	4	1	1,2
2	Standardization of potassium permanganate by Oxalic acid	4	2	1,2
3	Conductometric titration of HCl vs NaOH	4	1	1,2
4	Determination of strength of given hydrochloric acid using pH meter	4	1	1,2
5	Determination of hardness of water by EDTA method	4	2	1,2
6	Estimation of iron content of the given solution using potentiometer	4	3	1,2
7	Iodometric Determination of Ascorbic Acid (Vitamin C)	6	2	1,2

Learning Assessment - Laboratory

		Continuous I	Learning Assessments	(50%)	
21000	m's Level of nitive Task	Experiments (20%)	Record / Observation Note (10%)	Viva and Model (20%)	End Semester Exam (50%)
Level 1	Remember Understand	40%	40%	40%	50%
Level 2	Apply Analyse	40%	40%	40%	40%
Level 3	Evaluate Create	20%	20%	20%	10%
	Total	100%	100%	100%	100%

Recommended Resources

- 1. G.H Jeffery, J Bassett, J Mendham, R.C Denny, Vogel's Textbook of Quantitative Chemical Analysis, Longmann Scientific and Technical, John Wiley, New York.
- 2. J.B Yadav, Advanced Practical Physical Chemistry, Goel Publishing House, 2001.

Recommended Resources

- 1. A.I Vogel, A.R Tatchell, B.S Furnis, A.J Hannaford, P.W.G Smith, Vogel's Textbook of Practical Organic Chemistry, Longman and Scientific Technical, New York, 1989.
- 2. J.V. McCullagh, K.A. Daggett, J. Chem. Ed. 2007, 84, 1799.

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Introduction to Computer Science and Programming Using C

Course Code	CSE 108	Course Category	Core Course (C)	L-T-P-C	3	0	0	3
Pre- Requisite Course(s)		Co-Requisite Course(s)	CSE 108L	Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Gain basic knowledge in C programminglanguage.

- **Objective 2:** Acquire knowledge on Decision making and functions in C.
- **Objective 3:** Learn arrays, strings and pointers concept in C.

Objective 4: Understand the basics concepts of Structures, Union and File handling techniques using C Programming.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Describe C structures, enumerators, keywords, header files and operators	2	75 %	65%
Outcome 2	Illustrate Decision-Making statements and Functions.	3	70 %	65%
Outcome 3	Interpret arrays, strings, and pointers programming in C	3	70 %	65%
Outcome 4	Apply Structures, unions, File handling operations on different scenarios	3	70 %	65%
Outcome 5	Solve given projects based on C concepts	4	70 %	65%

Course Antioulation	Matrie (CLO)	to Due average	T	\mathbf{O} and \mathbf{O} \mathbf{D} \mathbf{I} \mathbf{O}
Course Articulation	wiatrix (CLO)	io Program.	Learning	Outcomes (PLO)

				Р	rogra	ım L	earni	ing O	utco	mes (PLO)			
CLOs	EngineeringKnowledge	ProblemAnalysis	D es ig n a n d D e v el o p m e nt	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S o c i e t y a n d M u l t i c u l t u r a l S k i l l s	E n v i r o n m e n t a n d S u s t a i n a b i l i t y	M o r a l , a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k i l s	C o m m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a n c e	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f e l f - D i r e c t e n f f e l f f e l f f e l f f e l f f e l f f e l f f e l f f e l f f e l f f e l f f e l f f e l f f e l f f e l f f f e l f f e l f f e l f f e l f f e l f f e l f f f e l f f f e l f f f e l f f f f	P S O 1	P S O 2	P S O 3
Outcome 1	3	3	2	1								g	2	2	3
Outcome 2	3	3	2	1									3	2	3
Outcome 3	3	3	2	2									3	2	3
Outcome 4	3	3	2	2									3	2	3
Outcome 5	3	3	2	2								2	3	2	2
Course Average	3	3	2	2								2	3	2	3

Course Utilization Plan

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	Reference s Used
UNIT I	INTRODUCTION TO COMPUTER SCIENCE	9	1	1
	Fundamentals of Computing, Historical perspective, Early computers	2	1	1,2
	Computing machine. Basic organization of a computer: ALU, input-output units, memory, program counter - variables and addresses - instructions: store, arithmetic, input and output	2	1	1,2
	Problem solving: Algorithm / Pseudo code, flowchart, program development steps	2	1	1,2
	Computer languages: Machine, symbolic and high-level langua Level languages	1	1	1,2
	Creating and Running Programs: Writing, editing (any editor), compiling (gcc)	1	1	1,2
	linking, and executing in Linux environment	1	1	1,2
UNIT II	C PROGRAMMING BASICS	9		
	Structure of a C program, identifiers Basic data type and sizes. Constants, Variables	1	1	1,2
	Arithmetic, relational and logical operators, incremer and decrement operator's	1	1	1,2
	Conditional operator, assignment operator, expressio Type conversion	1	1	1,2
	Conditional Expressions Precedence and order of evaluation, Sample Programs.	1	1	1,2
	SELECTION & DECISION MAKING: if-else, null examples, multi-way selection: switch, else-if,	2	1	1,2
	ITERATION: Loops - while, do-while and for, break continue,	1	1	1,2
	initialization and updating, event and counter controlled loops and examples.	2	1,2	1,2
UNIT III	FUNCTIONS AND ARRAYS	10		
	User defined functions, standard library functions	1	2,3	1,2
	Passing 1-D arrays, 2-D arrays to functions.	1	2,3	1,2
	Recursive functions - Recursive solutions for Fibonacci series, towers of Hanoi.	2	2,3	1,2

			and a lot water of	
	C Pre-processor and header files	1	2,3	1,2
	Concepts, declaration, definition, storing and accessing elements	1	2,3	1,2
	one dimensional, two dimensional and multidimensional arrays	2	2,3	1,2
	array operations and examples, Character arrays and string manipulations	2	2,3	1,2
UNIT IV	POINTERS	10		
	Concepts, initialization of pointer variables	1	3,4	1,2
	pointers as function arguments, passing by address, dangling memory, address arithmetic	2	3,4	1,2
	character pointers and functions, pointers to pointers	2	3,4	1,2
	pointers and multi-dimensional arrays, dynamic memory management functions	2	3,4	1,2
	command line arguments	1	3,4	1,2
UNIT V	ENUMERATED, STRUCTURE AND UNION TYPES	9		
	Structures - Declaration, definition, and initialization of structures, accessing structures	2	5	2, 3, 4
	nested structures, arrays of structures, structures and functions, pointers to structures,	2	5	2, 3, 4
	self-referential structures. Unions, typedef, bit- fields, program applications	2	5	2, 3, 4
	Bit-wise operators: logical, shift, rotation, masks.	1	5	2, 3, 4
	FILE HANDLING: Concept of a file, text files and binary files, formatted I/O, file I/O operations and example programs.	2	5	2, 3, 4
	Total Hours	47		

Recommended Resources:

- 1. The C programming Language by Brian Kernighan and Dennis Richie.
- 2. Programming in C, Pradip Dey and Manas Ghosh, Second Edition, OXFORD Higher Education, 2011.
- 3. Problem Solving and Program Design in C, Hanly, Koffman, 7th edition, PEARSON 2013.
- 4. Programming with C by R S Bichkar, Universities Press, 2012.

Other Resources

1. **"Programming with C"**, Byron Gottfried, Mcgraw hill Education, Fourteenth reprint,2016

Learning Assessment

		Co	End Semester			
	's Level of ive Task	CLA- 1 (10%)	Mid-1 (20%)	CLA-2 (10%)	CLA-3 (10%)	Exam (50%)
Level	Remember	70%	60%	50%	40%	30%
1	Understand	7070	0070	5070	4070	3070
Level	Apply	30%	40%	50%	60%	70%
2	Analyse	30%	40 %	5070	0070	7070
Level	Evaluate					
3	Create					
	Total	100%	100%	100%	100%	100%

SRM University– AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Introduction to Computer Science and Programming using C-Lab

Course Code	CSE 108L	Course Category	Core Course (C)	L-T-P-C	0	0	1	1
Pre-Requisite Course(s)		Co-Requisite Course(s)	CSE 108	Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Learn and understand C programming basics and paradigm.

Objective 2: Acquire knowledge on decision making and functions in C.

Objective 3: Acquire knowledge on decision making, loop concept, control statements, arrays, string and functions using C.

Objective 4: Learn basics of Structures, Union, and File handling concepts in C.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Describe fundamentals in C, enumerators, datatypes, vakeywords, header files and operators	2	75 %	65%
Outcome 2	Illustrate Decision-Making statements and Functions.	3	70 %	65%
Outcome 3	Interpret arrays, strings, and pointers programming in C	3	70 %	65%
Outcome 4	Apply Structures, unions, File handling operations on different scenarios	3	70 %	65%
Outcome 5	Solve given projects based on C concepts	4	70 %	65%

Course Articulation			/LU) (
CLOs	S ci e nt if ic a n d D is ci pl in ar y K n o w le d g e	A n al yt ic al R e a s o ni n g a n d P r o bl e m S ol vi n g	C ri ti c al a n d R ef le ct iv e T hi n g	Sci ent ifi c Re as oni ng an d De sig n Th ink ing	gram R e s e a r c h R e l a t e d S k i l s	M o d er n T o o l s a n d I C T U s a g e	E n vi r o n m e nt a n d S u st ai n bi li ty	M M o r al , M u lt ic u lt u r al a n d E t h ic al A w a r e n e s s	I n di vi d u al a n d T e a m w o r k S ki Il s	C o m m u n i c a t i o n S k i 1 1 s	S el f-D ir e ct e d a n d L if e L o n g L e a r n i n g	P S C 1	P S C 2	P S O 3
Outcome 1	2	3	3	3	2				2			3	2	
Outcome 2	2	2	3	3	2				2			2	2	
Outcome 3	2	3	3	2	2				2			2	2	
Outcome 4	3	3	3	3	2				3			2	3	
Outcome 5	2	3	3	3	3				3			2	2	
Course Average	2	3	3	3	2				2			2	2	

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

Course Unitization Plan

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
UNIT I	INTRODUCTION TO COMPUTER SCIENCE	4		

				COLMER OF A STOCK
1	Lab Experiment 1: GCC Compiler u Linux, various Linux commands use edit, compile and executing	2	1	1,2
2	Lab Experiment 2: a) Calculation of the area of the triangle. b) Swap two numbers without using a temporary variable. c) Find the roots of a quadratic equation	2	1	1,2
UNIT II	C PROGRAMMING BASICS	6		
3	 Lab Experiment 3: a) Find the sum of individual digits of a positive integer and find the reverse of the given number. b) Generate the first n terms of Fibonacci sequence. c) Generate all the prime numbers between 1 and n, where n is a value supplied by the user. 	2	1,2	1,2
4	 Lab Experiment 4: a) Print the multiplication table of a given number n up to a given value, where n is entered by the user. b) Decimal number to binary conversion. c) Check whether a given number is the Armstrong number or not. 	2	1,2	1,2
5	Lab Experiment 5: Triangle star patterns	2	1,2	1,2
UNIT III	FUNCTIONS AND ARRAYS	9		
6	Lab Experiment 6:a) (nCr) and (nPr) of the given numbers $1+x+x^2\backslash 2+x^3\backslash 3!+x^4\backslash 4!+X^n\backslash n!$	2	2,3	1,2
7	Lab Experiment 7: a) Interchange the largest and smallest numbers in the array.b) Searching an element in an arrayc) Sorting array elements.	2	2,3	1,2
8	Lab Experiment 8: a. Transpose of a matrix. b.Addition and multiplication of 2 matrices.	2	2,3	1,2
9	Lab Experiment 9: a. Function to find both the largest and smallest number of an array of integers.	2	2,3	1,2

			THE R. L. S. L.	Andhra Pradesh
	b. Liner search. c. Replace a character of string either from beginning or ending or at a specified location.			
10	Lab Experiment 10: Pre-processor directives a. If Def b. Undef c. Pragma	1	2,3	1,2
UNIT IV	POINTERS	6		
11	Lab Experiment 10: a. Illustrate call by value and call by reference. b. Reverse a string using pointers Compare two arrays using pointers	2	3, 4	1,2,3
12	Lab Experiment 11: a. Array of Int and Char Pointers. Array with Malloc(), calloc() and realloc().	2	3, 4	1,2,3
13	Lab Experiment 12: a. To find the factorial of a given integer. b. To find the GCD (greatest common divisor) of two given integers. c. Towers of Hanoi	2	3, 4	1,2,3
UNIT V	ENUMERATED, STRUCTURE AND UNION TYPES	4		
14	Lab Experiment 13: a. Reading a complex number b. Writing a complex number. c. Addition of two complex numbers Multiplication of two complex numbers	2	5	2, 3, 4
15	Lab Experiment 14: a. File copy b. Word, line and character count in a file.	2	5	2, 3, 4
	Total Hours		29	

Recommended Resources:

- 1. The C programming Language by Brian Kernighan and Dennis Richie.
- 2. Programming in C, Pradip Dey and Manas Ghosh, Second Edition, OXFORD Higher Education, 2011.
- 3. Problem Solving and Program Design in C, Hanly, Koffman, 7th edition, PEARSON 2013.
- 4. Programming with C by R S Bichkar, Universities Press, 2012.

Other Resources

1. **"Programming with C"**, Byron Gottfried, Mcgraw hill Education, Fourteenth reprint,2016

Learning Assessment

Dloom	's Level of		rning Assessments 0%)	End Semester Exam (50%)		
	itive Task	Lab Record (20%)	Projects Presentations (30%)	Project (20%)	Project Presentation (30%)	
Level 1 Remember		70%	60%	30%	40%	
Level I	Understand	70%	0070	30%	4070	
Level 2	Apply	30%	40%	70%	60%	
Level 2	Analyse	30%	4070	7070	0070	
Level 3	Evaluate					
Level 5	Create					
r	Fotal	100%	100%	100%	100%	

SRM University – AP, Andhra Pradesh

Neeru Konda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

	Calculus									
Course Code	MAT 113	Course CategoryCore Course (CC)L-T/D-P/Pr- C		L-T/D-P/Pr- C	3	0	0	3		
Pre-Requisite Course(s)	NA	Co-Requisite Course(s)	NA	Progressive Course(s)		N	A			
Course Offering	Mathematics	Professional / Licensing								
Department	wanematics	Standards								

Calculus

Course Objectives:

Objective 1: Develop a comprehensive understanding of the fundamental concepts of calculus, including limits, derivatives, and integrals. Apply calculus techniques to solve a wide range of mathematical problems.

Objective 2: Utilize calculus to find extreme values of functions and understand the Mean Value Theorem.

Apply calculus to analyze monotonic functions, identify inflection points, and sketch curves.

Objective 3: Apply Lagrange multipliers to solve optimization problems with single constraints.

Calculate double and iterated integrals over various regions and in polar form. Utilize triple integrals in rectangular coordinates and apply them to real-world scenarios to find volumes, masses, and more.

	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
CO 1	Describe functions and their graphs to identify key characteristics such as domain, range, and behaviour.	2	75%	80%
CO 2	Compute derivatives of d-variable functions at specific points and apply various differentiation rules.	3	70%	75%
CO 3	Determine definite and indefinite integrals of functions and their applications.	3	75%	80%
CO 4	Apply calculus techniques to solve practical problems, including finding extreme values of functions. Utilize the Mean Value Theorem to understand rate of change in real-world applications.	4	72%	75%

Course Outcomes (COs)

CO 5	Analyse double and triple integrals over			
	various regions and apply calculus to real- world problems such as finding volumes, masses, and areas.	4	70%	75%

Course Articulation Matrix (CLO) to (PLO)

Cours	se All		tion M												
	E n gi n ee ri n g K n o w le d g e	P r o b l e m A n a l y s i s	D es ig n an d D ev el op m en t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S occ iet y an d M ul tic ul tu ra 1 S ki lls	En vir on m en t an d Su sta in ab ili ty	M o r al , a n d E t h ic al A W a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k il ls	Co m mu nic ati on Ski lls	Pr oj ec t M an ag e m en t an d Fi na nc e	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f e c t e l f - D i r e c t i f e c t i f c c f f c c t i f f f c c i f f f c c i f f f c c c i f i f	P S O 1	P S O 2	P S O 3
Ou tco me 1	2	3		2					3			g			
Ou tco me 2	3	2		1					3						
Ou tco me 3	2	3		1					3						
Ou tco me 4	3	3		2					3						

Ou tco me 4	3	2	2			3			
Ou tco me 5	2	3	2			2			
Co ur se Av er ag e	3	3	2			3			

Learning Assessment (Macro)

Bloom	n's Level of	Contin	uous Lear (ds6	End Semester Assessments		
Cogi	nitive Task	CLA-1 (15%)	Mid-1 (25%)	CLA-2 (10%)	CLA-3 (10%)	(40%)
Level 1	Remember	30%	20%	25%	25%	20%
Level I	Understand	20%	30%	30%	25%	30%
Level 2	Apply	25%	30%	25%	25%	25%
Level 2	Analyse	25%	20%	20%	25%	25%
Level 3	Evaluate					
Level 5	Create					
	Total	100%	100%	100%	100%	100%

Course Unitization Plan

Unit No.	Description of Topic	Contact Hours Required	CLOs Addressed	References Used
	Unit I: Limit, Continuity, Derivative, and Integrals of Single Variable	10 Hours		
	Functions and Their Graphs,	1	CO 1	1
Unit	Limit of a function at a point and limit laws,	2	CO 1	1
I	Continuity of a function,	1	CO 1	1
	Derivative of a function at a point,	2	CO 2	1
	Various rules of Derivative,	1	CO 2	1
	Definite and indefinite integral,	2	CO 3	1
	Fundamental Theorem of Calculus.	1	CO 3	1
Unit II	Unit II: Applications of Calculus (Single Variable)	9 Hours		

	Extreme Values of Functions	2	CO 4	1
	The Mean Value Theorem, Monotonic	2	CO 4	1
	Functions	2		1
	Concavity and curve sketching	2	CO 4	1
	Newton's Method to find roots	1	CO 4	1
	Area between curves	1	CO 4	1
	Arc length.	1	CO 4	1
	Unit III: Limit, Continuity, Partial			
	Derivatives of Multi-Variables	10 Hours		
	Function			
	Three-dimensional rectangular coordinate systems	1	CO 1	1
Unit	Functions of several variables	2	CO 1	1
III	Limits and continuity	2	CO 2	1
	Partial Derivatives	1	CO 3	1
	The Chain Rule, Directional	2	CO 3	1
	Derivatives,	2		1
	Gradient.	2	CO 3	1
	Unit IV: Extrema of Multi-Variables Function	6 Hours		
	Extreme values	1	CO 4	1
Unit	Saddle points	1	CO 4	1
IV	Absolute Maxima and Minima on Closed Bounded Regions,	2	CO 4	1
	Lagrange multipliers (Single Constraints).	2	CO 4	1
	Unit V: Multiple Integrals	10 Hours		
	Double and Iterated Integrals over Rectangles	2	CO 5	1
	Double Integrals over General Regions.	2	CO 5	1
Unit V	Area by Double Integration,	1	CO 5	1
V	Double Integrals in Polar Form	1	CO 5	1
	Triple Integrals in Rectangular	2	CO 5	1
	Coordinates	2		1
	Applications.	2	CO 5	1
	Total		45	1

Recommended Resources

1. Thomas' Calculus, 14th Edition, Joel R. Hass, Christopher E. Heil, Maurice D. Weir, 2018

SEMESTER II

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

		0						
Course Code	MAT 211	Course Category	FIC	L-T-P-C	3	0	0	3
Pre-Requisite		Co-Requisite		Progressive				
Course(s)		Course(s)		Course(s)				
Course		Professional /						
Offering	MATHEMATICS	Licensing						
Department		Standards						

Linear Algebra

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To make students understand the central ideas of linear algebra like solving linear equations performing matrix algebra, calculating determinants, finding eigenvalues and eigenvectors.

Objective 2: Equip the student with various solution techniques and modelling of linear and non-linear first and second-order differential equations, including systems of equations.

	At the end of the course, learners will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Use the systems of linear equations for solving given problems in science and engineering.	2	80%	70%
Outcome 2	Demonstrate the procedures of solving linear equations.	3	80%	70%
Outcome 3	Performing matrix algebra, calculating determinants, finding eigenvalues and eigenvectors.	3	80%	70%
Outcome 4	Demonstrate the qualitative nature of system of differential equations using matrix algebra.	3	70%	70%

Course Outcomes / Course Learning Outcomes (CLOs)

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

					Prog	gram L	.earnin	ng Ou	tcome	s (PLO)				
CL Os	Engi neeri ng Kno wled ge	Pro ble m An aly sis	Desig n and Devel opme nt	Ana lysi s, Des ign and Res earc h	Mo der n To ol an d IC T Us age	Socie ty and Multi cultur al Skills	Envir onme nt and Sustai nabili ty	Mor al, and Ethi cal Awa rene ss	Indi vidu al and Tea mw ork Skill s	Comm unicati on Skills	Proje ct Mana geme nt and Finan ce	Self - Dir ecte d and Lif elo ng Lea rnin g	P S O 1	P S O 2	P S O 3

		-		-					-	-	And
Out	2	3	2	2							
со											
me											
1											
Out	2	3	2	2							
со											
me											
2											
Out	2	3	2	2							
со											
me											
3											
Out	3	3	3	3							
со											
me											
4											
Со											
urs											
e	2	3	2	2							
Ave	4	5	4	4							
rag											
e											

Course Unitization Plan

Unit	Unit Name	Required Contact	CLOs	References
No.		Hours	Addressed	Used
	Matrices and Gaussian elimination	10		
	Introduction, Geometry of Linear Equations	1	1	1
T	Gaussian Elimination	2	1,2	1
Unit I	Matrix Notation and Matrix Multiplication	2	2	1
	Triangular Factors and Row Exchanges	3	1,2	1
	Inverses and Transposes	2	3, 4	1
	Vector spaces	9		
	Vector spaces and Subspaces	1	1,2	1
	Solving $Ax = 0$ and $Ax = b$	2	1,2	1
Unit II	Linear Independence, Basis and Dimension	2	1,2	1
	The Four Fundamental Subspaces	2	1,2	1
	Graphs and Networks, Linear Transformations	2	2	1,2
Unit	Orthogonality	8		
III	Orthogonal Vectors and Subspaces	1	1,2	1
111	Cosines and Projections onto Lines	2	,2,3	1

	Projections and Least Squares	3	2	1,2
	Orthogonal Bases and Gram- Schmidt	2	1,3	1,2
	Determinants	8		
T T •4	Introduction	1	3	1
Unit IV	Properties of the Determinant	2	1,3	1
1 V	Formulas for the Determinant	2	1,3	1
	Applications of Determinants	3	1,3	1,2
	Eigenvalues and eigenvectors	10		
	Introduction, Diagonalization of a Matrix	3	3	1,2
Unit V	Difference Equations and Powers Ak	2	3	1,2
Unit v	Differential Equations and etA and phase portrait	3	3,4	1,2
	Complex Matrices, Similarity Transformations	2	3	1,2
Total C	ontact Hours		45	

Recommended Resources:

1. Gilbert Strang, Linear Algebra and Its applications, Nelson Engineering, 4th Edn., 2007

2. S. Axler, Linear Algebra Done Right, 2nd Edn., UTM, Springer, Indian edition, 2010.

Learning Assessment (Macro)

Bloor	n's Level of	Contin		ning Asses 60%)	sments	End Semester Assessments
Cogi	nitive Task	CLA-1 (15%)	Mid-1 (25%)	CLA-2 (10%)	CLA-3 (10%)	(40%)
Laval 1	Remember	30%	20%	25%	25%	20%
Level 1	Understand	20%	30%	30%	25%	30%
Level 2	Apply	25%	30%	25%	25%	25%
Level 2	Analyse	25%	20%	20%	25%	25%
Level 3	Evaluate					
Level 5	Create					
	Total		100%	100%	100%	100%

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	MAT 141	Course Category	FIC	L-T/D-P/Pr-C	3 0 0 3
Pre-Requisite Course(s)	NA	Co-Requisite Course(s)	NA	Progressive Course(s)	NA
Course Offering Department	Mathematics	Professional / Licensing Standards			

Discrete Mathematics

Course Objectives:

Objective 1: The objective is to equip the students with the mathematical definitions, proofs, and applicable methods.

Objective 2: Use mathematically correct terminology and notation. Constructs correct direct and indirect proofs.

Objective 3: Use foundational concepts in number theory and algorithms and developing problem-solving skills through the application of mathematical reasoning and induction principles.

Objective 4: Familiar about graphs and graph models, terminology, and special types is to understand the fundamental concepts and applications of graphs in various domains.

	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
CO 1	Express an argument using predicates, quantifiers and logic connectives and determine if the argument is valid.	2	80%	80%
CO 2	Apply the rules of inferences and methods of proofs including direct and indirect proofs, proof by contradiction and mathematical induction.	3	70%	60%
CO 3	Describe set properties, set operations, set identities, and representing relationship between the sets.	2	80%	70%
CO 4	Discover whether a given function is one-one, onto and invertible.	4	70%	60%

Course Outcomes (COs)

CO 5	Define the concept of divisibility, congruence, greatest common divisor, prime numbers, and prime factorization of numbers.	1	80%	80%
CO 6	Apply counting principles to determine probabilities and solving problems using recurrence relations.	3	70%	60%
CO 7	Explain graphs, their representations and determine the Euler circuits, Hamilton circuits, Euler paths and Hamilton paths in a graph.	3	80%	80%

Course Articulation Matrix (CLO) to (PLO)

Cours	se Art	icula		aurix		<u>)) to (</u> rom I			teomo	s (PLO)				
C L Os	E n gi n ee ri n g K n o w le d g e	P r o b l e m A n a l y s i s	D es ig n an d D ev el op m en t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S oc iet y an d M ul tic ul tu ra l S ki lls	En vir on m en t an d Su sta in ab ili ty	M o r al , a n d E t h ic al A w a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k i i l s	Co m mu nic ati on Ski Ils	Pr oj ec t M an e m en t an d Fi na nc e	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f e c t e n g L	P S O 1	P S O 2	P S O 3
Ou tco me 1	2	3	2	-	-	-	-	-	2	-	-				
Ou tco me 2	2	3	2	-	-	-	-	-	1	-	-				
Ou tco	2	3	2			-	-	-	2	-	-				

												1000AN
me 3												
Ou tco me 4	3	2	3		-	-	-	2	-	-		
Ou tco me 5	2	3	2		-	-	-	2	-	-		
Ou tco me 6	3	3	3		-	-	-	3	-	-		
Ou tco me 7	3	3	3		-	-	-	2	-	-		
Co ur se Av er ag e	3	3	2					2				

Learning Assessment (Macro)

Bloor	n's Level of	Contin		rning Asses)%)	sments	End Semester Assessments
Cogi	nitive Task	CLA-1 (15%)	Mid-1 (25%)	CLA-2 (10%)	CLA-3 (10%)	(40%)
Laval 1	Remember	30%	25%	10%	20%	25%
Level 1	Understand	30%	25%	30%	30%	30%
Level 2	Apply	25%	25%	30%	30%	25%
Level 2	Analyse	15%	25%	30%	20%	20%
Level 3	Evaluate					
Create						
	Total		100%	100%	100%	100%

Course Unitization Plan

Unit No.	Description of Topic	Contact hours	CLo's Addressed	Reference
	Unit I - The Foundations: Logic and Proofs	10		
	Propositional Logic, Applications of Propositional Logic,	1	CO 1	1
Unit I	Propositional Equivalences	1	CO 1	1
Umt I	Predicates and Quantifiers	2	CO 1	1
	Nested Quantifiers, Rules of Inference	2	CO 2	1
	Introduction to Proofs	2	CO 2	1
	Methods and Strategy.	2	CO 2	1
	Unit II- Set Theory	5		
	Laws of set theory	2	CO 3	1
Unit II	Set Operations	3	CO 3	1
11	Functions	3	CO 4	1
	Sequences and Summations	2	CO 4	1
	Matrices	3	CO 4	1
	Unit III – Elementary number theory, Induction and Recursion	10		
	Divisibility and Modular Arithmetic	2	CO 5	1
Unit III	Integer Representations and Algorithms	2	CO 5	1
111	Primes and Greatest Common Divisors, Solving Congruence	2	CO 5	1
	Mathematical Induction, Strong Induction and Well-Ordering	2	CO 2	1
	Recursive Definitions and Structural Induction.	2	CO 5	1
	Unit IV – Counting principles	9		
Unit IV	The Basics of Counting, The Pigeonhole Princip Permutations and Combinations	2	CO 6	1
	Binomial Coefficients and Identities	2	CO 6	1

				and a lot office. The lot of the lot of the
	Applications of Recurrence Relations, Solving Linear Recurrence Relations	2	CO 6	1
	Divide-and-Conquer Algorithms	2	CO 6	1
	Recurrence Relations	1	CO 6	1
	Unit V – Introduction to Graph Theory	11		
	Graphs and Graph Models, Graph Terminology and Special Types of Graphs	6	CO 7	1
Unit V	Trees, Spanning trees, Minimal spanning trees	4	CO 7	1
	Representing Graphs and Graph Isomorphism	5	CO 7	1
	Connectivity, Euler and Hamilton Paths	5	CO 7	1
:	Shortest-Path Problems	2	CO 7	1
	Total	45		

Recommended Resources

Kenneth H. Rosen (2012), *Discrete Mathematics and Applications*, Seventh edition, Tata McGraw-Hill.

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	BIO 103	Course Category	Core Elective	L-T-P-C	2	0	0	2
Pre-Requisite		Co-Requisite		Progressive				
Course(s)		Course(s)		Course(s)				
Course	Department of	Professional /						
Offering	Biological	Licensing						
Department	Sciences	Standards						
Board of		Academic						
Studies		Council						
Approval		Approval Date						
Date								

Introductory Biology for Engineers

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** Provide students with a foundational understanding of biomolecules, cell structures, and functions, as well as the diversity of life forms.
- **Objective 2:** Equip students with knowledge of molecular biology processes, cell physiology, and the use of bioinformatics tools for analyzing biological data.

	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Understand the structure and function of carbohydrates, lipids, nucleic acids, and proteins.	2	80%	75%
Outcome 2	Describe the structure and function of prokaryotic and eukaryotic cells, and understand life diversity.	2	70%	65%
Outcome 3	Explain membrane transport, cellular respiration, photosynthesis, enzymes, vitamins, and hormones.	2	70%	65%
Outcome 4	Understand DNA structure, replication, transcription, translation, and the impact of mutations.	2	70%	65%
Outcome 5	Use bioinformatics tools to analyze biological data and access databases like NCBI.	3	70%	65%

Course Outcomes / Course Learning Outcomes (CLOs)

										(PLO)		- /			
CL Os	Engi neeri ng Kno wled ge	Pro ble m An alys is	Desig n and Devel opme nt	Ana lysi s, Des ign and Res earc h	Mo der n To ol and IC T Us age	Socie ty and Multi cultur al Skills	Envir onme nt and Sustai nabilit y	Mor al, and Ethi cal Awa rene ss	Indi vidu al and Tea mwo rk Skill s	Comm unicati on Skills	Proje ct Mana geme nt and Finan ce	Self - Dir ecte d and Life lon g Lea rnin g	P S O 1	P S O 2	P S O 3
Out com e 1	1	1		1				1	1	1		2			
Out com e 2	1	1		1				1	1	1		2			
Out com e 3	1	2		2				1	1	1		2			
Out com e 4	1	2		2				1	1	1		2			
Out com e 5	1	2	1	2	3			1	1	2		3			
Co urs e Ave rag e	1	1.	1	1.6	3			1	1	1.2		2.			

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

Unit No.	Unit Name	Required Contact	CLOs Addressed	References
		Hours		
Unit 1	Biomolecules	6		
	Why study Biology?	1	1, 2	1, 2, 3
	Evolution of complex biomolecules	1	1, 2	1, 2, 3
	Life on earth	1	1, 2	1, 2, 3
	Biomolecules - carbohydrates	1	1, 2, 5	1, 2, 3
	Biomolecules – lipids and fats	1	1, 2	1, 2, 3

	Biomolecules – nucleic acids and			1 2 2
	proteins	1	1, 2	1, 2, 3
Unit	1			
2	Cell Biology	6		
	Prokaryotic cell structure	2	1, 2, 3	1, 2, 3
	Eukaryotic cell (Animal and Plant)			1, 2, 3 1, 2, 3
	- structure and functions of	2	1, 2, 3	
	organelles			
	Diversity of life: virus, bacteria,	2	1.2	1, 2, 3
	archaea and eukarya	2	1,2	
Unit 3	Cell Physiology	6		
	Membrane transport	1	1,3	1, 2, 3
	Cellular respiration and energy	2	1.2	1, 2, 3 1, 2, 3
	generation	2	1, 2	
	Brief account of Photosynthesis	1	1,2	1, 2, 3 1, 2, 3 1, 2, 3
	Enzymes and their kinetics	1	1,2	1, 2, 3
	Vitamins, Hormones	1	1,2	1, 2, 3
Unit 4	Molecular Biology	6		
	DNA and Chromosomes: structure and organization	1	1-5	1, 2, 3
	Central Dogma- DNA replication,	2	1-5	1, 2, 3
	transcription and translation			
	Cell division – mitosis and meiosis	1	1-5	1, 2, 3 1, 2, 3
	Mutations, Cancer, and genetic diseases.	2	1-5	1, 2, 3
Unit 5	Biological Sequences and Databases	6		
	Concept of genomics, transcriptomics, proteomics, and metabolomics	1	1,5	4
	FASTA file format	1	1,5	4
	Biological databases – NCBI	1	1,5	4
	Applications of BLAST and	1	1 2 5	4
	protein/Gene ID conversion	1	1, 3, 5	
	Hands on experience in analyzing			4
	biological data using above	2	1, 3, 5	
	mentioned tools			
	Total Contact Hours		30	

Recommended Resources

 Thrives in Biochemistry and Molecular Biology, Edition 1, 2014, Cox, Harris, Pears,
 Oxford University Press.
 Thrives in Cell Biology, Ed. 1, 2013, Qiuyu Wang, Chris Smith and Davis, Oxford
 University Press.
 iGenetics: A Molecular Approach by Peter J Russell, 3rd edition, Pearson

International Edition. 4. Bioinformatics Introduction – Mark Gerstein.

Learning Assessment

		Continuo	us Learnin	g Assessme	nts (50%)	End Semester
Bloom's Level of Cognitive Task		CLA-1 (10%)	Mid-1 (15%)	CLA-2 (10%)	CLA-3 (15%)	Exam (50%)
		Th	Th	Th	Th	Th
Level 1	Remember	100%	30%	70%	60%	70%
Level I	Understand	100%		7070	0070	70%
Level 2	Apply		70%	30%	40%	30%
Level 2	Analyse		7070	30%	4070	3070
Level 3	Evaluate	-				
	Create					
	Total		100%	100%	100%	100%

Environmental Science

Course Code	ENV 111	Course Category	FIC	L-T-P-C	2002
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)	
Course Offering	Environmental Science	Professional /			
Department	and Engineering	Licensing Standards			

Course Objectives

- **1.** Aims to provide a comprehensive introduction to wide-ranging environmental issues and their drivers.
- **2.** To understand numerous approaches to reduce a variety of contemporary environmental problems for a sustainable future.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Explain sustainable solutions for various environmental issues.	2	80%	70%
2	Infer the functioning of ecosystems, matter cycling, and diversity of species around us.	2	80%	70%
3	Determine the impact of overexploitation of natural resources on our environment.	3	80%	70%
4	Explore the extent of environmental pollution and diverse regulations, policies and efforts to reduce the environmental burden.	3	80%	70%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

					Prog	gram I	earnin	g Out	comes	(PLO)					
	Ε	Р	D	Α	Μ	S	Ε	Μ	Ι		Pr	S			
	n	r	es	n	0	ос	nv	0	n		oj	e			
	gi	0	ig	а	d	ie	ir	r	d	Со	ec	1			
	n	b	n	1	e	ty	on	а	i	m	t	f			
C	e	1	а	У	r	а	m	1,	v	m	Μ	-	Р	р	р
L	er	e	n	s	n	n	en	а	i	un	а	D	S	r S	S
Os	i	m	d	i	Т	d	t	n	d	ica	n	i	0	0	0
05	n	Α	D	s	0	Μ	an	d	u	tio	а	r	1	2	3
	g	n	ev	,	0	ul	d	Ε	а	n	g	e	1	2	3
	K	a	el	D	1	ti	S	t	1	Sk	e	с			
	n	1	0	e	а	cu	us	h	а	ills	m	t			
	0	У	р	s	n	lt	tai	i	n		e	e			
	w	s	m	i	d	ur	na	с	d		nt	d			

	le d g e	i s	e nt	g n a n d R e s e a r c h	I C T U s a g e	al S ki 11 s	bi lit y	a l A w a r e n e s s s	T e a m w o r k S k il 1 s		a n Fi n a n ce	a n d l f e L o n g L e a r n i n g			Andh
O ut co m e 1	1	-	-	-	-	-	3	1	-	-	-	1	-	-	-
O ut co m e 2	1	1	-	-	-	-	3	-	-	-	-	1	-	-	-
O ut co m e 3	1	-	-	-	-	-	3	-	-	-	-	1	-	-	-
O ut co m e 4	1	1	-	-	-	-	3	-	-	-	-	1	-	-	-
Co ur se A ve ra ge	1	1	-	-	-	-	3	1	-	-	-	1	-	-	-

Course Unitization Plan

Unit No.	Syllabus Topics	Required Contact Hours	CLOs Addressed	References Used
Unit No.	ENVIRONMENTAL CRISIS AND SUSTAINABLE DEVELOPMENT	3		1, 2

1			1	
	Need for environmental science studies, Fundamentals of ENV – Atmosphere, lithosphere, hydrosphere, biosphere. Global environmental crisis and its causes, Man-Environment relationship & interaction	2	1	1, 2
	Ecological footprint, Sustainable development	1	1	1, 2
	ECOSYSTEMS	5	2, 3	1, 3
	Ecosystem - Structure and functions of an ecosystem	1	2, 3	1, 3
	Energy flow in an ecosystem, biomass flow in an ecosystem, food chain and web, Ecological Succession	1	2, 3	1, 3
Unit	Ecological pyramid, Water cycle, Carbon cycle, Sulphur cycle, Nitrogen cycle	1	2, 3	1, 3
No. 2	Forest ecosystems: tropical rain forest, coniferous forests, tundra forests, temperate forests, Grasslands and desert ecosystems	2	2, 3	1, 3
	Aquatic ecosystems: Freshwater zones, streams, rivers, state of rivers in India, wetlands, Zones in ocean, ocean activities, coastal zones, Estuaries, Mangroves	1	2, 3	1, 3
	RENEWABLEANDNON-RENEWABLE RESOURCES	5	3, 4	1, 2
Unit	Energy resources: Global energy crisis, energy sources, energy needs, global energy consumption, Renewable and Non-renewable energy sources: Hydropower, Solar, tidal, wind, energy, Bioenergy, coal, natural gas	2	3, 4	1, 2
No. 3	Energy resources: fossil fuel vs renewable fuels, peak oil Conventional and unconventional oil, oil price determination	1	3, 4	1, 2
	Environmental implications of Energy use: India and world, Energy use pattern – national and global	1	3, 4	1, 2
	Water availability, Water for irrigation, water situation in India	1	3, 4	1, 2
Unit No.	BIODIVERSITY	6	2, 3	1, 2, 3

				An
4	Significance of biodiversity, Current state of biodiversity: National and global, Causes of biodiversity loss	2	2, 3	1, 2, 3
	Biological hotspots, aquatic biodiversity	1	2, 3	1, 2, 3
	Endangered species and endemic species of India	1	2, 3	1, 2, 3
	Biodiversity conservation: Seed banks, botanical gardens, marine biodiversity protection, national and international efforts	2	2, 3	1, 2, 3
	Environmental Pollution and Control	11	1, 4	1, 2, 4
	Types of Environmental Pollution Air pollution: Sources, effects, and control Air standards, Air pollution in India and the world Sources of air pollution, Outdoor & Indoor air pollution Point source, mobile, area source, Effects of air pollution: Smog, urban heat island, ozone layer depletion, acid rain, Controlling air pollution: Emission regulation, e-cars	2	1, 4	1, 2, 4
Unit No. 5	Water pollution: Sources & effects, Water Quality standards, Water pollutants, eutrophication, thermal pollution, bio- magnification, Wastewater treatment, Methods of water purification	2	1, 4	1, 2, 4
	Soil pollution: Sources, causes and effects Control of soil pollution: Air purging, phytoremediation, and bio-remediation	2	1, 4	1, 2, 4
	Solid waste management, Types and sources of solid wastes, Hazardous waste, and electronic wastes, Recycling, and management of solid wastes (4Rs), Sanitary landfills and leachate management	2	1, 4	1, 2, 4
	Noise pollution: Sources, effects, and control Air quality standards with respect to noise	1	1, 4	1, 2, 4

Introduction to Climate change: Impact of climate change, IPCC assessment, Carbon footprint, carbon sequestration, carbon trade, carbon credits, Kyoto protocol, Montreal protocol, Paris agreement	2	1, 4	1, 2, 4
--	---	------	---------

Learning Assessment

		C	ontinu	ous L	earnin	g Asse	ssmen	ts (50 °	/0)	E	nd
Bloom's Level of Cognitive Task		CLA-1 (10 %)		Mid-1 (15 %)		CLA-3 (10 %)		Mid-2 (15 %)		Semester Exam (50 %)	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level	Remember	30%		30%		30%		30%		30%	
1	Understand	40%	% -	40%	-	20%	-	20%	-	40%	
Level	Apply	30%		30%		50%	50%		40%		
2	Analyse	-	-	-	-	-	-	-	-	-	-
Level	Evaluate										
3	Create	-	-	-	-	-	-	-	-	-	-
	Total	10	0%	10	0%	10	0%	10	0%	10	0%

Recommended Online Resources

- 1. R. Rajagopalan (2016). Environmental Studies (3rd edition), Oxford University Press. ISBN: 9780199459759
- 2. Deeksha Dave, S.S. Katewa (2012). Textbook of Environmental Studies (2nd edition), Cengage. ISBN: 9788131517604
- 3. W. Cunningham, M. Cunningham (2016). Principles of Environmental Science (8th Edition), McGraw-Hill. ISBN: 0078036070
- 4. APHA and AWWA (1999): Standard Methods for the Examination of Water and Wastewater. American Public Health Association (APHA), 20th Ed, Washington, D.C., USA. ISBN: 9780875532356
- 5. KL Rao (1979). India's water wealth. Orient Black Swan. ISBN: 8125007040
- Saadat, S., Rawtani, D., & Hussain, C. M. (2020). Environmental perspective of COVID-19. Science of The Total Environment, 138870. https://doi.org/10.1016/j.scitotenv.2020.138870

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

	Dasic	Electrical and Electronic	s Engineering		Dasic Eleculical and Eleculonics Eligneering								
Course Code	EEE 103	Course Category	Engineering Sciences (ES)	L-T-P-C	2	0	0	2					
Pre-Requisite Course(s)	Physics	Co-Requisite Course(s)	-	Progressiv e Course(s)		Cir The							
Course Offering Department	EEE	Professional / Licensing Standards		-									

Basic Electrical and Electronics Engineering

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To provide the basic idea on electrical and electronic circuits.

Objective 2: Describe the laws and concepts on electrical circuits.

Objective 3: Discuss the network theorems under DC Excitation

Objective 4: Conduct Steady State Analysis on Pure R, L, C Circuits, RL, RC and RLC circuits under single-phase AC Excitation.

Objective 5: Illustrate the basic semiconductor devices, analog circuits and applications.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom' s Level	Expected Proficienc y Percentag e	Expected Attainmen t Percentag e
Outcome 1	Describe the application on electrical engineering in daily life	2	70%	70%
Outcome 2	Discuss the laws and concepts for electrical circuits.	2	70%	70%
Outcome 3	Apply the network theorems under DC Excitation	3	70%	70%
Outcome 4	Conduct Steady State Analysis on Pure R, L, C Circuits, RL, RC and RLC circuits under single- phase AC Excitation.	2	70%	70%
Outcome 5	Describe the basic semiconductor devices and applications.	2	60%	60%

Course Articulation Matrix (CLO) to (PLO)

CLOs Program Learning Outcomes (PLO)

Outcome 1	EngineeringKnowledge	ProblemAnalysis	D e s i g n a n d D e v e l o p m e n t	Analysis, DesignandResearch	M o d e r n T o o l a n d I C T U s a g e 2	S o c i e t y a n d M u l t i c u l t u r a l S k i l s	E nvi r o nme n t a ndS us t a i n a b i l i t y	M o r a l , a n d E t h i c a l A w a r e n e s s	I n d i v i d u a n d T e a m w o r k S k i l s 1	C o m m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a n c e c	Self DirectedandLifelongLearning 2	P S O 1	P S O 2	P S O 3
		2													
Outcome 2	3	3	1		2				1	1		2			
Outcome 3	3	3	1		2				1	1		2			
Outcome 4	3	3	1		2				1	1		2			
Outcome 5	3	3	1		2				1	1		2			
Course Average	3	2	1		2				1	1		2			

Course Unitization Plan - Theory

Unit No.	Unit Name	Required Contact Hours	CLOs Addresse d	Reference s Used
Unit 1	Basic Circuit Analysis	8		
	Ohm's law, Kirchhoff's laws, Concept of Node, Path, Loop, Branch, Mesh	2	1, 2	1, 2
	Voltage and Current Division, Ideal and Practical Voltage and Current Source, Source transformations	2	1, 2	1, 2
	Nodal Analysis and Supernode - Presence of independent voltage and current sources.	2	1, 2	1, 2
	Mesh Analysis and Super mesh - Presence of independent voltage and current sources. Illustrative examples.	2	1, 2	1, 3
Unit 2	Network Theorems with DC Source	6		
	Introduction to Network Theorems and Techniques, Superposition Theorem	1	1, 3	2, 3
	Thevenin's Theorem	2	1, 3	1, 2
	Norton's Theorem	1	1, 3	1, 2

	Maximum Power Transfer Theorem, Illustrative	2	1, 3	1, 2
TI 14.0	examples.	11		-
Unit 3	Single-Phase AC Circuits	11		
	Basic Concepts Related to Generation of Sinusoidal		1, 4	
	AC Voltage. Definition and Numerical values of	2		1, 2
	Average Value, Root Mean Square Value, Form Factor			7
	and Peak Factor for sinusoidal varying quantities			
	Steady State Analysis of Pure R, L, C Circuits.	2	1, 4	1, 2
	Steady State Analysis of RL, RC and RLC Series	5	1,4	1, 2
	Circuits with Phasor Diagrams		1 4	
	Definitions of Real Power, Reactive Power, Apparent	2	1,4	1.0
	Power, and Power Factor. Concepts of Resonance	2		1, 2
T T •4 4	Illustrative examples.	10		
Unit 4	Semiconductor Devices and Circuits	12	1 5	1.0
	PN junction diode structure	1	1, 5	1, 2
	Forward and reverse bias operation and characteristics of PN junction diode	1	1, 5	1, 2
	Half-wave, full wave, bridge rectifiers, clipping circuits using PN junction diode	2	1, 5	2, 3
	Bipolar junction transistors (BJTs) structure and operation	2	1, 5	1, 2
	common-base, common-collector, and common-emitter configurations using BJTs	6	1, 5	1,2
Unit 5	Basic Analog Circuits and Applications	8		
10	Characteristics of an operational amplifier and	3	1, 5	1.2
18.	Definitions of characteristics	3		1, 2
	Inverting and non-inverting op-amps, summing		1, 5	
19.	amplifier, Difference amplifier, Integrator and	3		4,5
	differentiator design using op-amp			
20	Op Amp Applications as Voltage to Current Converter	2	1, 5	1.2
20.	and Current to Voltage converters, filters	2		1, 2
Total Co	ontact Hours		45	

Recommended Resources

- 1. William H Hayt, J E Kemmerly and Steven M Durbin, "Engineering Circuit Analysis", McGraw Hill, 8th Edition, 2011.
- 2. Abhijit Chakrabarti, "Circuit Theory Analysis and Synthesis", Dhanpat Rai & Co. 7th Edition, 2017.
- 3. Online Sources

Other Resources

- Electrical Engineering Fundamentals, Vincent Del Toro, Second Edition, PHI
- Fundamentals of Electrical Engineering, Second edition, Leonard S. Bobrow, Oxford University press, 2011

Learning Assessment (Theory)

		Continu	ous Learnin	End Semester		
Question Difficulty	Bloom's Level of Cognitive Task	CLA-1 (15%)	Mid-1 (15%)	CLA-2 (15%)	CLA-3 (15%)	Exam (40%)
Level 1	Remember	30%	60%	30%	30%	30%
Level 1	Understand	50%	0070	5070	5070	30%
Level 2	Apply	70%	40%	70%	70%	70%
Level 2	Analyse	/0%			70%	70%
Level 3	Evaluate					
Level 5	Create					
	Total	100%	100%	100%	100%	100%

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	EEE 103L	Course Category	Engineering Sciences (ES)	L-T-P-C	0	0	1	1
Pre-Requisite Course(s)	Physic	Co-Requisite Course(s)	-	Progressiv e Course(s)		Cir The		
Course Offering Department	EEE	Professional / Licensing Standards		-				

Basic Electrical and Electronics Engineering Lab

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To provide the basic idea for electrical and electronic circuits.

Objective 2: Describe the laws and concepts on electrical circuits.

Objective 3: Discuss the network theorems under DC Excitation

Objective 4: Conduct Steady State Analysis on Pure R, L, C Circuits, RL, RC and RLC circuits under single-phase AC Excitation.

Objective 5: Summarize the basic semiconductor devices, analog circuits and applications.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to			Expected Attainmen t Percentage
Outcome 1	Describe the electrical engineering application in daily life	2	70%	70%
Outcome 2	Discuss the electrical circuits laws and concepts	2	70%	70%
Outcome 3	Apply the network theorems under DC Excitation	3	70%	70%
Outcome 4	come 4 Conduct Steady State Analysis on Pure R, L, C Circuits, RL, RC and RLC circuits under single-phase AC Excitation.		70%	70%
Outcome 5	Describe the basic semiconductor devices and applications.	2	60%	60%

Course Articulation Matrix (CLO) to (PLO)

CLOs	Program Learning Outcomes (PLO)

	-		-		-		-			-			10 mm		Andh
Outcome 1	EngineeringKnowledge	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e 2	S o c i e t y a n d M u l t i c u l t u r a l S k i l s	E n v i r o n m e n t a n d S u s t a i n a b i l i t y	M o r a l , a n d E t h i c a l A w a r e n e s s	I n d i v i d u a n d T e a m w o r k S k i l s	C o m m u n i c a t i o n S k i l s	P r o j e c t M a n a g e m e n t a n d F i n a n c e c t M a n a g e m e n t a n d F i o i	Self DirectedandLifelongLearning 2	P S O 1	P S O 2	P S O 3
Outcome 2		3	1	1	2							2			
Outcome 2 Outcome 3	3	3	1	1	2				1	1		2			
	3 2	3		1	2							2			
Outcome 4			1	1					1	1					
Outcome 5	1	3	1	1	2				1	1		2			
Course Average	2	2	1	1	2				1	1		2			

Course Unitization Plan - Lab

Exp. No.	Name of Experiment	Required Contact Hours	CLOs Addressed	References Used	
1	Verification of Ohm's Law	3	1,2	1, 2	
2	Verification of Kirchoff's Law	3	1,2	1, 2	
3	Verification of Superposition theorem	3	1,3	1, 2	
4	Verification of Thevenin's and Norton's theorem	3	1,3	1, 3	
5	Verification of Maximum Power transfer theorem.	3	3,4	1, 2	
6	P-N junction diode I-V characteristics	3	1,5	4, 5	
7	Application of P-N junction diode	3	1,5	1, 3	
8	BJT I-V characteristics (I/P and O/P)	3	4,5	1, 2	
9	Op-Amp Inverting and Non-inverting mode - Gain verification	3	1,5	2, 4	
10	Verification of truth tables of basic logic gates	3	3,5	1, 2	
Total C	ontact Hours	30			

Recommended Resources

- 1. William H Hayt, J E Kemmerly and Steven M Durbin, "Engineering Circuit Analysis", McGraw Hill, 8th Edition, 2011.
- 2. Abhijit Chakrabarti, "Circuit Theory Analysis and Synthesis", Dhanpat Rai & Co. 7th Edition, 2017.
- 3. Online Sources

Other Resources

- 4. Electrical Engineering Fundamentals, Vincent Del Toro, Second Edition, PHI
 - 4. Fundamentals of Electrical Engineering, Second edition, Leonard S. Bobrow, Oxford University press, 2011

Learning Assessment - Lab

		Continuo	ous Learning Assess	ments (50%)	End Semester Exam (50%)
Bloom's Level of Cognitive Task		Experiments (20%)	Record/ Observation Note (10%)	Viva Voce + Model examination (20%)	
Level 1 Remember		30%	60%	30%	30%
	Understand	5070	0070	5070	50%
Level 2	Apply	70%	40%	70%	70%
Level 2	Analyse	7070	40 %	7070	7070
Level 3	Evaluate				
Level 5	Create				
	Total	100%	100%	100%	100%

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

INDUSTRY SPECIFIC EMPLOYABILITY SKILLS -II

Course Code	ISES 102	Course Category	Humanities and Social Sciences (HS)	L-T-P-C	3	0	0	1
Pre- Requisite Course(s)	ISES 101 Co-Requisite Course(s)			Progressive Course(s)		ISES	5 201	l
Course Offering Department	CDC	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To develop aptitude skills.

Objective 2: Develop the ability to solve logical problems.

Objective 3: To develop self-awareness and understand his emotions.

Objective 4: Build vocabulary through methodical approaches and nurture passion for learning new words.

Objective 5: Develop an ability to function on multidisciplinary teams.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able		Expected	Expected
	to	Bloom'	Proficienc	Attainmen
		s Level	У	t
			Percentage	Percentage
Outcome 1	Solve the basic mathematical problems.	3	90%	80%
Outcome 2	Demonstrate the ability in solving the logical	3	70%	80%
	reasoning problems.	5	7070	8070
Outcome 3	Use the images in solving the problems related to	3	80%	70%
	reasoning.	5	8070	7070
Outcome 4	Use emotional intelligence in developing	3	70%	60%
	interpersonal relations.	5	70%	00%
Outcome 5	Memorise grammatic rules for making flawless	1	80%	90%
	use of language.	1	80%	9070

am Learning Outcomes (PLO)

					1	1	1						<i></i>	-	Ar
	EngineeringKnowledge	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S o c i e t y a n d M u l t i c u l t u r a l S k i l s	Envi ronmentandSustainabi lity	M o r a l , a n d E t h i c a l A w a r e n e s s	I ndi vidualandTeamworkSkills	C o m m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a c e c t M a n a g e m e r o t	S e l f - D i r e c t e d a n d L i f e l o n g L e a r n i g	P S O 1	P S O 2	P S O 3
Outcome 1												2			
Outcome 2		2		1											
Outcome 3			2	3	1							2			
Outcome 4								2	3	2		2			
Outcome 5										3					
Course Average		2	2	2				2	3	3		2			

Course Unitization Plan

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
Unit 1	Quants			
	Concept 1: Averages, Aligation or Mixture, Percentage	1	1	2,4
	Concept 2: Profit and loss, True discount	1	1	2,4
	Concept 3: Partnership, Height, and Distance	1	1	2,4
Unit 2	Reasoning			
	Concept 1: Logical deductions, Syllogism	1	2,3	1,3,4
	Concept 2: Image based problems, Coding and Decoding	1	2,3	1,3,4
	Concept 3: Cubes and Cuboids, Inequalities, Input output tracing	1	2,3	1,3,4
Unit 3	Verbal			
	Concept 1: Ordering of sentences, Comprehension, Verbal Analogies.	1	5	7

	Concept 2: Essential parts of a sentence, One- word substitutes.	1	5	7
	Concept 3: Cause and effect, Syllogism	1	5	7
Unit 4	Communication skills			
	Concept 1: Sentence formation (Practical)	1	6	5,6
	Concept 2: Word group categorization, Casual conversation (Practical)	1	6	5,6
	Concept 3: Formal conversation (interpersonal)	1	6	5,6

Recommended Resources

- 1. R.S. Agarwal, A Modern Approach to Verbal & Non-Verbal Reasoning, S. Chand Publication
- 2. How to prepare for Quantitative Aptitude for CAT Arun Sharma
- 3. Meenakshi Upadhyay, Arun Sharma -Verbal Ability and Reading Comprehension
- 4. How to prepare for Logical reasoning and data interpretation for CAT Arun Sharma.
- 5. Mastering Soft skills Julian Vyner.
- 6. Soft skills Key to success in workplace and life Meenakshi Raman, Shalini Upadhyay.
- 7. English grammar and composition S. C. Gupta.

Learning Assessment (Theory only and integrated course)

	Continuous Learning Assessments (50%)								End Semester		
Bloom's Level of Cognitive Task		CLA-1	CLA-1 (10%)		Mid-1 (15%)		CLA-2 (10%)		(15%)	Exam (50%)	
		Th	Pra	Th	Pra	Th	Pra	Th	Pra	Th	Prac
			с		с		С		С		
Level 1	Remember	40%		40%		40%		40%		40%	
Level 1	Understand	40%	40%		4070		40%		40%		
Level 2	Apply	60%		60%		60%		60%		60%	
Level Z	Analyse	60%				60%		60%		60%	
Level 3	Evaluate										
Level 5	Create]									
	Total	100%		100%		100%		100%		100%	

			J 0	-	
Course Code	CHE 103	Course Category	Core (Physical	L-T-P-C	2002
			Chemistry)		2002
Pre-Requisite Course(s)		Co-Requisite Course(s)	NIL	Progressive Course(s)	NA
Course Offering	Department of	Professional /		NA	
Department	Chemistry	Licensing			
		Standards			

Name of the Course: Chemistry for Engineers

Course Objectives

- 1. To distinguish the types of bonding and can predict the structure, electronic and magnetic properties of small molecules and to learn the type of chemical reactions based on the reaction energetics and kinetics.
- 2. To gain in-depth knowledge about crystalline materials and to understand the types of polymers and familiar with industrial applications.
- 3. To learn the formation of proper electrochemical cell and their real-world applications.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Understand the theories of chemical bonding to predict molecular shapes and properties	2	80	70
2	Apply phase diagrams and thermochemical data for physical and chemical processes	3	75	65
3	Understand the crystallographic concepts to evaluate material properties	2	80	70
4	Apply the concepts of polymer science and electrochemistry	3	80	75

					Pr	ogram	Learnin	g Outo	omes	(PLO)					
	Ε	Р	D	Α	Μ	S	Ε	Μ	Ι	Со	Pr	S	Р	Р	Р
	n	r	es	n	0	oc	nv	0	n	m	oj	e	S	S	S
	gi	0	ig	а	d	ie	ir	r	d	m	ec	1	0	0	0
	n	b	n	1	e	ty	on	а	i	un	t	f	1	2	3
	e	1	an	У	r	а	m	1,	\mathbf{v}	ica	Μ	-			
C	er	e	d	s	n	n	en	а	i	tio	а	D			
C	i	m	D	i	Т	d	t	n	d	n	n	i			
L	n	Α	ev	s	0	Μ	an	d	u	Sk	а	r			
Os	g	n	el	,	0	ul	d	Ε	а	ills	g	e			
	K	а	0	D	1	ti	S	t	1		e	С			
	n	1	р	e	а	cu	us	h	а		m	t			
	0	У	m	s	n	lt	tai	i	n		e	e			
	w	s	en	i	d	ur	na	с	d		nt	d			
	le	i	t	g	Ι	al	bi	а	Т		а	а			
	d	s		n	С	S	lit	1	e		n	n			
				a	Т	ki	У	Α	а		d	d			

	g e			n d e s e a r c h	U s a g e	11 s		W a r e n e s s	m w o r k S k il 1 s		Fi n a n ce	L i f e l o n g L e a r n i n g			And
O ut co m e 1	1	1	2	2	1	1	-	-	1	1	-	1	2	1	1
O ut co m e 2	1	2	2	2	1	1	-	-	1	1	-	1	2	2	1
O ut co m e 3	1	1	1	2	1	1	-	-	1	1	-	1	1	1	2
O ut co m e 4	1	1	3	2	1	1	-	-	1	1	-	1	1	1	1
Co ur se A ve ra ge	1	1	2	2	1	1	-	-	1	1	-	1	1	1	1

Course Unitization Plan - Theory

Unit No.	Syllabus Topics	Required Contact Hours	CLOs Addressed	References Used
	Ionic, covalent, and metallic bonds, Theories of bonding: Valence bond theory, nature of covalent bond, sigma (σ) bond, Pi (π) bond.	2	1	1,2
Unit No. 1	Hydrogen bonding, Hybridization: Types of hybridization, sp, sp2, sp3, sp3d, d2sp3.	1	1	1,2
	Shapes of molecules (VSEPR Theory): BeCl2, CO2, BF3, H2O, NH3, CH4, PCl5, XeF2, SF6, XeF4.	2	1	1,2

r				1000
	Molecular orbital theory: Linear combination of atomic orbitals (LCAO Method)	1	1	1,2
	Phase rule, Definition of the terms used in phase rule with examples	2	2	1,2
Unit No.	Application of phase rule to water system water system	1	2	1,2
2 No.	Basics of thermochemistry: Standard terms in thermochemistry and their significance.	2	2	1,2
	Kinetics: Order and molecularity of reactions, Zero order and first order reactions	1	2	1,2
	Crystal structure: crystal systems, Properties of cubic crystals, Bragg's Law, Bravais lattices	1	3	1,2
Unit	Miller indices	1	3	1,2
No. 3	Point defects	1	3	1,2
	Band theory: metals, insulators, and semiconductors.	3	3	1,2
	Classification of polymers	2	4	1,2,3
Unit	Properties of polymers: Tg, Tacticity, Molecular weight, weight average.	1	4	1,2,3
No. 4	Degradation of polymer, Common Polymers: Elastomer, Conducting polymer, biodegradable polymer.	2	4	1,2,3
	Demineralization of water and Zeolite process	1	4	1,2,3
	Electrochemical cells	1	4	1,2
Unit No.	Primary and secondary cells	2	4	1,2
5 S	Lead-acid battery	1	4	1,2
	Li+ batteries and Fuel cells	2	4	1,2

Learning Assessment - Theory

		Cont	in	uous Lea	ning Ass %)	ses	ssments	End		
	Bloom's Level of Cognitive Task			CLA-2 (10%)	CLA-3 (10%)		Mid Term (15%)	Semester Exam (50%	_	
	Γ			Th	Th		Th	Th		
Level 1	Remember	50%		40%	40%		40%	40%		
Level I	Understand									
Level 2	Apply	40%		50%	40%		40%	40%		
Level 2	Analyse									
Larval 2	Evaluate	10%		10%	20%		20%	20%		
Level 3	Create									
	Total			100%	100%		100%	100%		

Recommended Resources

- 1. A. Bahl, B.S. Bahl, G.D. Tuli, Essentials of Physical Chemistry, (2016), S Chand Publishing Company
- 2. T. Jain, Y. Jain, Engineering Chemistry, 16th Edition (2017), Dhanpat Rai Publication Company
- 3. V. R. Gowariker, N. V. Viswanathan, J. Sreedhar, Polymer Science, New Age International, 1986. ISBN: 0-85226-307-4

Recommended Online Resources

- 1. B. R. Puri, L. R. Sharma & M. S. Pathania, Principles of Physical Chemistry, 46th Edition (2013), Vishal Publication Company
- 2. F.W. Billmeyer, Text Book of Polymer Science, 3rd Ed., John Wiley & Sons, New York, 2003.
- 3. A.J.Bard and L.R. Faulkner, Electrochemical methods –Fundamentals and Applications,,2nd Ed., John Wiley and Sons, 2001.
- 4. D.M. Adams, Inorganic Solids, An introduction to concepts in solid state structural chemistry. J. Willey & Sons, 1974.

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal

Guntur District, Mangalagiri, Andhra Pradesh 522240

114	Tunie of the Course, Chemistry for Engineers Eusorutory												
Course Code	CHE 103 L	Course Category	Core (Physical	L-T-P-C	0 021								
			Chemistry)		0 021								
Pre-Requisite	NIL	Co-Requisite	NIL	Progressive	NA								
Course(s)		Course(s)		Course(s)									
Course Offering	Department of	Professional /		NA									
Department	Chemistry	Licensing Standards											

Name of the Course: Chemistry for Engineers Laboratory

Course Objectives

- 1. To choose the appropriate indicator and other methods for a given acid base titration and may also predict the pH and pOH of the given solutions.
- 2. To Explain the principles and working of electrochemistry.
- 3. To learn the principles of complex formation in solution.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Understand the conductometric and pH meter techniques for titration analysis	2	80	70
2	Analyse and standardize solutions using redox and complexometric titrations	4	75	65
3	Analyse and quantify metal ions using potentiometry	4	80	70

	Program Learning Outcomes (PLO)														
	Е	Р	D	Α	Μ	So	Е	Μ	Ι	Со	Pr	S	Р	Р	Р
	n	r	es	n	0	ci	nv	0	n	m	oj	e	S	S	S
	gi	0	ig	а	d	et	ir	r	d	mu	ec	1	0	0	0
	n	b	n	1	e	У	on	а	i	nic	t	f	1	2	3
	ee	1	а	У	r	an	m	l,	v	ati	Μ	-			
	ri	e	n	s	n	d	en	a	i	on	а	D			
	n	m	d	i	Т	Μ	t	n	d	Ski	n	i			
	g K	Α	D	s	0	ul	an	d	u	lls	ag	r			
	K	n	ev	,	0	tic	d	Е	а		e	е			
	n	a	el	D	1	ul	Su	t	1		m	с			
	0	1	0	e	a	tu	st	h	а		en	t			
С	w	У	р	S	n	ra	ai	i	n		t	e			
L	le	s	m	i	d	1	na	с	d		а	d			
Os	d	i	en	g	I	S	bil	a	Т		n	а			
	g	s	t	n	C	ki	ity	1	e		d	n			
	e			a	T	lls		Α	а		Fi	d			
				n	U			w	m		n	L			
				d	s			а	w		а	i			
				R	a			r	0		nc	f			
				e	g			e	r		e	e			
				s	e			n	k			1			
				e				e	S			0			
1				а				s	k			n			
1				r				s	il			g L			
				C L					ls						
1				h								e			
												a			

												-	10 M & 10	State of Southern	Andl
												r n g			
Ou tco me 1	1	1	2	2	1	1	-	-	1	1	-	1	2	1	1
Ou tco me 2	1	2	2	2	1	1	-	-	1	1	-	1	2	2	1
Ou tco me 3	1	1	1	2	1	1	-	-	1	1	-	1	1	1	2
Co ur se Av er ag e	1	1	2	2	1	1	-	-	1	1	-	1	1	1	1

Course Unitization Plan - Laboratory

Exp No.	Experiment Name	Required Contact Hours	CLOs Addressed	References Used
1.	Volumetric titration of HCl vs NaOH	4	1	1,2
2.	Standardization of potassium permanganate by Oxalic acid	4	2	1,2
	Conductometric titration of HCl vs NaOH	4	1	1,2
4.	Determination of strength of given hydrochloric acid using pH meter	4	1	1,2
5.	Determination of hardness of water by EDTA method	4	2	1,2
6.	Estimation of iron content of the given solution using potentiometer	4	3	1,2
7.	Iodometric Determination of Ascorbic Acid (Vitamin C)	6	2	1,2

Learning Assessment - Laboratory

		Continuous I	Learning Assessments	s (50%)	
	n's Level of nitive Task	Experiments (20%)	Record / Observation Note (10%)	Viva and Model (20%)	End Semester Exam (50%)
Level 1	Remember Understand	40%	40%	40%	50%
Level 2	Apply Analyse	40%	40%	40%	40%
Level 3	Evaluate Create	_ 20%	20%	20%	10%
	Total	100%	100%	100%	100%

Recommended Resources

- 1. G.H Jeffery, J Bassett, J Mendham, R.C Denny, Vogel's Textbook of Quantitative Chemical Analysis, Longmann Scientific and Technical, John Wiley, New York.
- 2. J.B Yadav, Advanced Practical Physical Chemistry, Goel Publishing House, 2001.

Recommended Resources

- 1. A.I Vogel, A.R Tatchell, B.S Furnis, A.J Hannaford, P.W.G Smith, Vogel's Textbook of Practical Organic Chemistry, Longman and Scientific Technical, New York, 1989.
- 2. J.V. McCullagh, K.A. Daggett, J. Chem. Ed. 2007, 84, 1799.

Engineering Physics

Course Code	PHY 101	Course Category	FIC	L-T-P-C	2	0	0	2
Pre-Requisite Course(s)	NA	Co-Requisite Course(s)	PHY101L	Progressive Course(s)	NA	4		
Course Offering Department	Physics	Professional / Licensing Standards						

Course Objectives

- 1. Objective 1: To understand the fundamental concepts of physics and their application in engineering.
- 2. Objective 2: To develop problem-solving skills through physics-based problems.
- 3. Objective 3: To enhance practical knowledge through laboratory experiments and real-world applications.
- 4. Objective 4: To foster analytical and critical thinking skills.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Demonstrate understanding of core physics principles in mechanics, waves, modern physics, and electromagnetism	2	75	70
2	Apply physics principles to analyse and solve engineering physics problems	3	70	65
3	Demonstrate problem-solving skills using mathematical tools	3	70	65
4	Interpret experimental observation that led to the progress of modern physics and optics	3	75	70

					P	rogram	Learnir	ng Outo	comes (PLO)					
	E n gi ne	P r o b	D esi gn	A n a l y s i	M o d e r n T	So cie ty an	Learnir En vir on m	ng Outo M o r al , a n	comes (I n d iv i d u	PLO) Co	Pr oj ec t M an	S e l f - D i			
C L Os	er in g K n o wl ed ge	r e M A n a l y s i s	an d D ev el op m en t	r s , D e s i g n a n d R	o o l a n d I C T U s a	d M ult ic ult ur al Sk ills	en t an d Su sta in ab ilit y	n d E t h ic al A w a r e n	u al n d T e a m w o r k	m mu nic atio n Ski Ils	an ag e m en t an fi na nc e	r e c d a n d L i f	P S O 1	P S O 2	P S O 3

				e s a r c h	g e		e ss	S k il ls		e L o n g L e a r n i n g			
Ou tco me 1	2	2	1	1	1		1	2		2	1	1	1
Ou tco me 2	2	3	2	2	2		2	2		2	2	1	1
Ou tco me 3	2	3	2	2	2		2	2		2	2	1	1
Ou tco me 4	2	2	2	2	1		2	2		2	2	1	2
Co ur se Av er ag e	2.0	2.5	1.8	1.8	1.5		1.8	2.0		2.0	1. 8	1. 0	1. 3

Course Unitization Plan: Theory

Unit No.	Syllabus Topics	Required Contact Hours	CLOs Addressed	References Used
	Introduction	1	1	1, 3
	Newton's laws of mechanics, Free body force diagram	1	1, 2, 3	1, 3
Unit No.	Momentum and Impulse, Conservation of linear momentum	1	1, 2, 3	1, 3
1	Work-Kinetic Energy Theorem and related problems	1	1, 2, 3	1, 3
	Conservation of mechanical energy: Worked out problems	1	1, 2, 3	1, 3
	Elastic properties of solids, Stress-strain relationship, elastic constants, and their significance	1	1	1, 2
Unit No. 2	Focus on Maxwell's Equation I : Discuss lines of force and Electrostatic flux, Introduce Gauss's law (differential and integral form)	1	1	1, 4

				12013
	Application of Gauss Law: ES field due to infinite wire and sheet.	1	1, 2, 3	1, 4
	Electrostatic field due to conducting and insulating sphere.	1	1, 2, 3	1, 4
	Concept of Electrostatic Potential and Potential Energy. Inter-relation with electrostatic field.	1	1	1, 4
	Capacitor and Capacitance:	1	1	1, 4
	Capacitance of a parallel plate capacitor.	1	1, 2, 3	1, 4
	Introduce Biot-Savart Law as an alternative approach to calculate magnetic field.	1	1	1, 4
	Calculate Magnetic field due to finite current element using Biot Savart Law.	1	1, 2, 3	1, 4
Unit	Focus on Maxwell's Equation IV: Discuss Ampere's circuital law.	1	1	1, 4
No. 3	Calculate Magnetic field due to Infinite wire and Solenoid using Ampere's Law.	1	1, 2, 3	1, 4
	Focus on Maxwell's Equation III: Lenz's Law and Faraday's law: Induced EMF and Current	1	1, 4	1, 4
	Describe Maxwell Equations as the foundation of electro-magnetism. Derive differential forms starting from Integral forms. Discuss Physical Significance.	1	1	1, 4
	Concept of Electromagnetic waves & EMW Spectra	1	1	1, 2
Unit	Geometrical & Wave Optics: Laws of reflection and refraction	1	1	1, 2
No.	Concept of Interference	1	1	1, 2
4	Phase Difference and Path Difference	1	1	1, 2
	Newton's Ring	1	1, 2	1, 2
	The Michelson Interferometer	1	1, 2, 3, 4	1, 2
	Black Body Radiation; Wien's displacement law	1	1, 2	1, 2
	Discussion on failure of classical laws to explain Black Body Radiation, and concept of Planck's Hypothesis	1	1, 4	1, 2
	What is Light? Photon and Overview on Planck Constant	1	1	1, 2
	Photoelectric effect - Concept and Experimental Setup	1	1, 2, 3, 4	1, 2
Unit No.	Photoelectric effect – Intensity vs Current, Frequency vs Kinetic Energy, the drawback of Wave theory to explain Photoelectric effect	1	1, 2, 3, 4	1, 2
5	Wave properties of particle: De Broglie wave	1	1, 4	1, 2

Learning Assessment

		C	ontinu	ous Lea	rning A	Asses	sment	s (50 %)		End		
of C	Bloom's Level of Cognitive Task		x-1 %)	CLA-2 (15 %)		CI (LA-3 _%)	Mid T (20 °		Semester Exam (50 %)		
	Task	Th	Pra c	Th	Pra c	T h	Pra c	Th	Pra c	Th	Pra c	
Leve 11	Remembe r	20%		10%				10%		20%		

	Understan d	40%	30%	30%	40%	
Leve	Apply	30%	40%	40%	30%	
12	Analyse	10%	20%	20%	10%	
Leve	Evaluate					
13	Create					
	Total	100	100	100	100	
		%	%	%	%	

Recommended Resources

- 1. Serway, R. A., & Jewett, J. W. (2017). Physics for Scientists and Engineers with Modern Physics (9th ed.). Cengage India Private Limited.
- 2. Young, H. D., Freedman, R. A., & Ford, L. C. (2018). University Physics with Modern Physics with Mastering Physics (12th ed.). Pearson.

Recommended Online Resources

- Massachusetts Institute of Technology: OpenCourseWare. (2023). Physics I: Classical Mechanics. Retrieved from Massachusetts Institute of Technology: MIT OpenCourseWare <u>https://ocw.mit.edu/courses/physics/8-01x-classical-mechanics-fall-2023/</u>
- Massachusetts Institute of Technology: OpenCourseWare. (2023). Physics II: Electricity and Magnetism. Retrieved from Massachusetts Institute of Technology: MIT OpenCourseWare <u>https://ocw.mit.edu/courses/physics/8-02x-electricity-and-magnetism-fall-2023/</u>

Engineering Physics Lab

Course Code	PHY 101L	Course Category	FIC	L-T-P-C	2	0	0	2
Pre-Requisite Course(s)	NA	Co-Requisite Course(s)	PHY101	Progressive Course(s)	NA	4		
Course Offering Department	Physics	Professional / Licensing Standards						

Course Objectives

Objective 1: Operate physics equipment and measurement tools following safety protocols. **Objective 2:** Determine the physical parameters of mechanics, electromagnetism, modern physics and optics.

Objective 3: Collect experimental data, analyse, and interpret.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Understand experimental set-up and equipment operation	2	75	70
2	Demonstrate accurate data collection using modern equipment	3	70	65
3	Evaluate experimental data to interpret and explain the underlying physics concepts	3	70	65
4	Determine physical properties and verify physics laws	3	70	65

					P	rogram	Learnir	ng Outo	comes (PLO)					
C L Os	E n gi er in g K n o wl ed ge	P o b l e m A n a l y s i s	D esi gn an d D ev el op m en t	A n a l y s i s , D e s i g n a n d R e s e	M o d e r n T o o l a n d I C T U s a g e	So cie ty an d M ult ic ult ur al Sk ills	En vir on en t an d Su sta in ab ilit y	M o r al , a n d E t h ic al A w a r e n e ss	I nd iv i d u a n d T e a m w o r k S k	Co m mu nic atio n Ski Ils	Pr oj ec t M an ag e m t an t an d Fi na nc e	S elf - D i r e c t e d a n d L i f e L o	P S O 1	P S O 2	P S O 3

				_									And
				a r c				il Is		n g L			
				c h						e L			
										а			
										r			
										n i			
										n			
										g			
Ou													
tco	2	3	2	2	2		2	2		2	1	1	1
me													
1													
Ou													
tco	2	3	2	2	2		2	2		2	2	1	1
me 2													
Ou													
tco													
me	2	3	2	2	2		2	2		2	2	1	1
3													
Ou													
tco	2	2	2	2	2		2	2		•	•	1	2
me	2	3	2	2	3		2	3		2	2	1	2
4													
Co													
ur													
se											1	1	1
Av	2.0	3.0	2.0	2.0	2.3		2.0	2.3		2.0	1. 8	1. 0	1. 3
er											0	v	5
ag													
e													

Course Unitization Plan: Laboratory

Exp No.	Syllabus Topics	Required Contact Hours	CLOs Addressed	References Used
1	Moment of inertia of a flywheel	2	1,2,3,4	1,2
2	Hooke's law and determine spring constant for a given spring	2	1,2,3,4	1,2
3	Compound Pendulum: Acceleration due to gravity and radius of gyration of the given pendulum			
	To determine the rigidity modulus of steel wire by torsional Pendulum [Optional]	4	1,2,3,4	1,2
	To calculate Young's modulus of a given material by deflection method [Optional]			
4	Faraday law & Induced E.M.F: Measurement of the induced voltage and calculation of the magnetic flux induced by a falling magnet	2	1,2,3,4	1,2

To study the B-H curve of the given material and the permeability curve of the given material. [Optional]			
 Biot-savart law: To study the dependence of magnetic field on the current and magnetic field along the axis of a current carrying circular loop Hall Effect: Determination of type of semiconductor and carrier concentration in a given semiconductor [optional] Magnetic field in Helmholtz coil [Optional] a. To investigate the spatial distribution of magnetic field between coils and determine the spacing for uniform magnetic field. a. To demonstrate the superposition of the magnetic fields of the two individual coils. 	2	1,2,3,4	1,2
To determine the dielectric constant of air using dielectric constant kit. Measurement of Resistivity of a semiconductor using Four probes [Ontional]	4	1,2,3,4	1,2
Michelson interferometer kit with diode laser	4	1,2,3,4	1,2
Balmer Series and Rydberg constant [Optional]			
He-Ne laser kit: Optical Interference and Diffraction			
Solar cell characteristics[Optional]	4	1,2,3,4	1,2
Frank Hertz Experiment [Optional]			
Particle size measurement	2	1,2,3,4	1,2
Verification of Stefan's Law Measurement of specific heat capacity of any	4	1,2,3,4	1,2
	 permeability curve of the given material. [Optional] Biot-savart law: To study the dependence of magnetic field on the current and magnetic field along the axis of a current carrying circular loop Hall Effect: Determination of type of semiconductor and carrier concentration in a given semiconductor Ioptional] a. To investigate the spatial distribution of magnetic field between coils and determine the spacing for uniform magnetic field. a. To demonstrate the superposition of the magnetic fields of the two individual coils. To determine the dielectric constant of air using dielectric constant kit. Measurement of Resistivity of a semiconductor using Four probes [Optional] Michelson interferometer kit with diode laser Resolving power of A Telescope [Optional] He-Ne laser kit: Optical Interference and Diffraction Solar cell characteristics[Optional] Frank Hertz Experiment [Optional] Particle size measurement Verification of Stefan's Law 	permeability curve of the given material. [Optional]Biot-savart law: To study the dependence of magnetic field on the current and magnetic field along the axis of a current carrying circular loopHall Effect: Determination of type of semiconductor and carrier concentration in a given semiconductor Icoptional]2Magnetic field in Helmholtz coil [Optional] a. To investigate the spatial distribution of magnetic field between coils and determine the 	permeability curve of the given material. [Optional]Image: Content of the given material. [Optional]Biot-savart law: To study the dependence of magnetic field on the current and magnetic field along the axis of a current carrying circular loopImage: Content of the given material of the axis of a current carrying circular loopHall Effect: Determination of type of semiconductor and carrier concentration in a given semiconductor [optional]21,2,3,4Magnetic field in Helmholtz coll [Optional]a. To investigate the spatial distribution of magnetic field between coils and determine the spacing for uniform magnetic field.41,2,3,4a. To demonstrate the superposition of the magnetic fields of the two individual coils.41,2,3,4To determine the dielectric constant of air using dielectric constant kit.41,2,3,4Measurement of Resistivity of a semiconductor using Four probes [Optional]41,2,3,4Michelson interferometer kit with diode laser41,2,3,4Resolving power of A Telescope [Optional]41,2,3,4He-Ne laser kit: Optical Interference and Diffraction41,2,3,4Solar cell characteristics[Optional]41,2,3,4Frank Hertz Experiment [Optional]21,2,3,4Particle size measurement21,2,3,4Werification of Stefan's Law41,2,3,4Measurement of specific heat capacity of any41,2,3,4

Learning Assessment

	Continue	ous Learning A	ssessments	(50 %)	
Bloom's Level of Cognitive Task	CLA-1 Experiment s (20 %)	CLA-2 Record Book/ Observatio n Note (10 %)	CLA-3 (%)	Mid Term - Model Exam (20 %)	End Semester Exam (50 %)

		Th	Prac	Th	Prac	Th	Pra c	Th	Prac	Th	Prac
Leve	Remember				20%				10%		
11	Understan d				20%				20%		
Leve	Apply		20%		20%				10%		20%
12	Analyse		20%		40%				20%		30%
Leve	Evaluate		60%						40%		50%
13	Create										
	Total		100%		100%				100 %		100 %

Recommended Resources

1. Shukla, R. K., & Srivastava, A. (2006). *Practical Physics*. New Delhi: New Age International (P) Limited Publishers.

Recommended Online Resources

2. Department of Physics, SRM University AP. Engineering Physics lab manuals. Retrieved from Engineering Physics Lab (FIC102) <u>https://srmap.edu.in/seas/physics-teaching-lab/</u>

Data Structures -I

Course Code	CSE 109	Course Category	FIC	L-T-P-C	3	0	0	3
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards		-				

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** To understand the basic concepts such as abstract data types, linear and non-linear data structures.
- **Objective 2:** To understand the behaviour of data structures such as arrays, linked lists, stacks, queues, trees, hash tables, search trees and their representations.
- **Objective 3:** To provide an independent view of data structures, including its representation and operations performed on them, which are then linked to sorting, searching and indexing methods to increase the knowledge of usage of data structures in an algorithmic perspective.

Objective 4: To choose an appropriate data structure for a specified application.

Course Outcomes / Course Learning Outcomes (CLOs)

Outcomes	At the end of the course the learner will be able to	Bloom' s Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Learn about the algorithm, pseudo code and notations to analyse the time	4	72%	70%
Outcome 2	Compare and contrast the algorithms for linked list, stack and queue operations.	4	77%	70%
Outcome 3	Illustrate algorithms for Binary Search Trees.	4	75%	70%
Outcome 4	Distinguish searching and sorting techniques.	3	78%	80%

					-	<u></u>	T	• •	<u> </u>	/D7					
CLOs			1	1	I		m Lear			mes (PL	()	1	1		
	E n gi n ee ri n g K n o w le d g e	P r o b l e m A n a l y s i s	D es ig n an d D ev el op m en t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S oc iet y an d M ul tic ul tu ra l S ki lls	En vir on m en t an d Su sta in ab ilit y	M o r a l, a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k il l s	Co m nu atio n Ski lls	Pr oj ec t M an ag e m en t an d Fi na nc e	S e l f - D i r e c t e d a n d L i f e L o n g L e a r n i n g	P S C 1	C	
Outcome 1	3	3	2	-	-	-	-	-	-	-	-	1	3	3	3
Outcome 2	3	3	2	1	-	-	-	-	-	-	-	1	3	3	3
Outcome 3	3	3	2	1	-	-	-	-	-	-	-	1	3	3	3
Outcome 4	3	3	1	-	-	-	-	-	-	-	-	1	3	3	3
Course Average	3	3	2	1	-	-	-	-	-	-	-	1	3	3	3

Course Unitization Plan

Unit	Unit Name	Required	CLOs	References
No.		Contact	Addressed	Used
		Hours		
Unit 1	Introduction to Data Structures	05		
	Introduction and Definition of Data	1	1	1
	Structure, Classification of Data Structure			
	Pseudocode, Flowcharts	1	1	1,2
	Algorithm Description, Sub-Algorithms	1	1	1
	Recursion, Basic Analysis of Algorithms -	1	1	1
	Random Access Machine Model	-	-	-
	Efficiency of algorithms, notion of time	1	1	
	complexity, space complexity, Time-	-	-	
	Space trade-off, Expressing Space-Time			
	Complexity, big-Oh notation.			
Unit 2	Arrays and Linked lists	09		
	Arrays: Representation of Arrays in	2	2	1
	Memory, Array operations: insertion	_		_
	deletion, Limitations of Array			
	Linked list representation, Operations of	2	2	1,2
	Linked Lists: Insertion and deletion at	_		_ ,_
	various positions, Searching			
	Doubly Linked List	2	2	1
	Circular Linked List	1	2	1
	Circular Doubly Linked List. Dispose a	2	2	1,2
	linked list			7
Unit 3	Stack and Queue	11		
	Stack: Introduction to Stack, Definition,	1	2	1
	Stack Implementation			
	Operations of Stack	1	2	1
	Applications of Stack: Parenthesis checker,	2	2	1,2
	Recursive function call.			7
	Linked List representation and operations	1	2	1
	of stack. Dispose a Stack.			
	Queues: Introduction to Queue, Linear	2	2	1
	Queue Implementation, Operations of			
	Queue: enqueue, dequeue,			
	Circular Queue, Enqueue and Dequeue	2	2	1,2
	operations of circular Queue			· ·
	Priority Queue, Linked List representation	2	2	1
	and operations of Queue. Dispose a Queue.			
Unit 4	Trees	11		
	Tree terminology	1	3	1
	Binary tree, Representation of Binary	1	3	1
	Trees using Arrays and Linked lists			
	Binary search tree	2	3	1

	Binary Search Trees- Basic Concepts, BST Operations: Insertion, Deletion	2	3	1
	Tree Traversals, Construction of tree using traversals	2	3	2
	Applications, Expression tree	1	3	1
	Heap Sort and its operations	2	3	1
Unit 5	Sorting and Searching techniques	09		
	Bubble sort, Selection sort and their algorithm analysis	1	4	2
	Insertion sort and its algorithm analysis	1	4	2
	Quick sort and its algorithm analysis	1	4	2,3
	Merge sort and its algorithm analysis	1	4	3
	Heap sort and its algorithm analysis	1	4	3
	Radix sort and its algorithm analysis	1	4	4
	Linear and binary search methods and its algorithm analysis.	2	4	4
	Hashing techniques and hash functions	1	4	4

Recommended Resources

- 1. "Data structure using C", Aaron M. Tenenbaum, Y Langsam and Mosche J. Augenstein, Pearson publication.
- 2. "Data structures and Algorithm Analysis in C", Mark Allen Weiss, Pearson publications, Second Edition.
- 3. **"Fundamentals of data structure in C"** Horowitz, Sahani & Anderson Freed, Computer Science Press.
- 4. **"Data Structures and Algorithms: Concepts, Techniques & Algorithm"** G.A.V.Pai: Tata McGraw Hill.

Learning Assessment

	n's Level of nitive Task	Continue	End Semester Exam (50%)			
		CLA-1 (5%)	Mid-1 (25%)	CLA-2 (10%)	CLA- 3(10%)	Th
Level 1	Remember	70%	60%	30%	30%	60%
	Understand					
Level 2	Apply	30%	40%	70%	70%	40%
	Analyse					
Level 3	Evaluate					
Create						
	Total		100%	100%	100%	100%

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	CSE 109L	Course Category	FIC	L-T-P-C	0	0	1	1
Pre-Requisite		Co-Requisite		Progressive				
Course(s)		Course(s)		Course(s)				
Course	CSE	Professional /		-				
Offering		Licensing						
Department		Standards						

Data Structures Lab-I

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** To understand the basic concepts such as abstract data types, linear and non-linear data structures.
- **Objective 2:** To understand the behaviour of data structures such as arrays, linked lists, stacks, queues, trees, hash tables, search trees and their representations.
- **Objective 3:** To provide an independent view of data structures, including its representation and operations performed on them, which are then linked to sorting, searching and indexing methods to increase the knowledge of usage of data structures in an algorithmic perspective.
- **Objective 4:** To choose an appropriate data structure for a specified application.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficienc y Percentage	Expected Attainme nt Percentag e
Outcome 1	Learn about the algorithm, pseudo code and notations to analyse the time	4	72%	70%
Outcome 2	Compare and contrast the algorithms for linked list, stack and queue operations.	4	77%	70%
Outcome 3	Illustrate algorithms for Binary Search Trees.	4	75%	70%
Outcome 4	Distinguish searching and sorting techniques.	3	78%	80%

Course Artic	culat					gram						J)			
CLOs	EngineeringKnowledge	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	$\begin{array}{c} S\\ o\\ c\\ i\\ e\\ t\\ y\\ a\\ n\\ d\\ M\\ u\\ l\\ t\\ i\\ c\\ u\\ l\\ t\\ u\\ r\\ a\\ l\\ S\\ k\\ i\\ l\\ s\end{array}$	E an V i r o n m e n t a n d S u s t a i n d S u s t a i n t y i i y	M o r a l , a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k i l l s	C o m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a n c e	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f e c t e a r n g L e a r n i n g	P S O 1	P S O 2	P S O 3
Outcome 1	3	3	2	-	-	-	-	-	-	-	-	1	3	3	3
Outcome 2	3	3	2	1	-	-	-	-	-	-	-	1	3	3	3
Outcome 3	3	3	2	1	-	-	-	-	-	-	-	1	3	3	3
Outcome 4	3	3	1	-	-	-	-	-	-	-	-	1	3	3	3
Course Average	3	3	2	1	-	-	-	-	-	-	-	1	3	3	3

Course Unitization Plan

Lab Experiment	Required Contact Hours	CLOs Address ed	References Used
 Insert and delete element in an single dimensional integer array. Implement search an integer in an array. String operation e.g. string copy, string comparison and string length without library function. Sparse matrix implementation using multidimensional array 	2	1, 2	1
Operations on singly link list using functions. (Creation, insertion, deletion)	1	1, 2	1,2
Perform operation on a linked list such as adding all elements of the list, find repeated words in the list. Operations on Doubly linked list (Creation, insertion, deletion)	1	2	1
Circular linked list (Creation, insertion, deletion) Sparse matrix implementation using linked list.	2	2	3
Implement the operations of Stack (Push, Pop, Empty) using arrays Implement the operations of Stack (Push, Pop, Empty) using linked list	1	2	1,2
Implement operations of Queue (enqueue, dequeue, Empty) using arrays Implement the operations of Queue (enqueue, dequeue, Empty) using linked list	1	2	1,2
Implementation of Infix to post fix and infix to prefix conversion of expressions	1	2	3
Create a binary tree from a given list of elements.	1	3	1
Implement tree traversal. Recursive (in-order, pre-order and post-order) Implement tree traversal. Iterative (in-order, pre-order and post-order)	1	3	1,2
Implement in-place sorting algorithm. Bubble, insertion, selection sort.	1	1, 4	4
Implement divide and conquer algorithms. Merge and quick	1	1, 4	4
Implementation of Hashing.	1	1, 4	5
Implement binary search	1	1, 4	5

Recommended Resources

1. "**Data structure using C**", Aaron M. Tenenbaum, Y Langsam and Mosche J. Augenstein, Pearson publication.

- 2. **"Data structures and Algorithm Analysis in C"**, Mark Allen Weiss, Pearson publications, Second Edition.
- 3. **"Fundamentals of data structure in C"** Horowitz, Sahani & Anderson Freed, Computer Science Press.
- 4. "Fundamental of Data Structures", (Schaums Series) Tata-McGraw-Hill.
- 5. **"Data Structures and Algorithms: Concepts, Techniques & Algorithm"**G.A.V.Pai: Tata McGraw Hill.

Learning Assessment

Bloom's Level of Cognitive		Continuous Learnin	g Assessments (50%)	End Semester Exam (50%)		
	Task	Project (20%)	Weekly Evaluation (30%)			
Level 1	Remember Understand	35%	45%	45%		
Level 2	Apply Analyse	65%	55%	55%		
Level 3	Evaluate Create					
	Total	100%	100%	100%		

SEMESTER III

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	AEC 105	Course Category	Ability Enhancement Courses (AEC)	L-T-P-C	1	0	1	2
Pre-Requisite		Co-Requisite		Progressive				
Course(s)		Course(s)		Course(s)				
Course Offering	Mathematic	Professional /						
Ũ		Licensing						
Department	S	Standards						

Analytical Skills for Engineers

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To categorize, apply and use thought process to distinguish between concepts of quantitative methods.

Objective 2: To prepare and explain the fundamentals related to various possibilities.

Objective 3: To critically evaluate numerous possibilities related to puzzles.

Objective 4: Explore and apply key concepts in logical thinking to business problems.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom' s Level	Expected Proficienc y Percentage	Expected Attainment Percentage
Outcome 1	Use logical thinking and analytical abilities to solve quantitative aptitude questions from company specific and other competitive tests.	1	70%	60%
Outcome 2	Solve questions related to Aptitude from company specific and other competitive tests.	3	80%	70%
Outcome 3	Understand and solve puzzle questions from specific and other competitive tests	1	70%	60%
Outcome 4	Make sound arguments based on mathematical reasoning and careful analysis of data.	1	90%	80%

CLOs Program Learning Outcomes (PLO)

														a la tra	And
	E n g i n e e r i n g K n o w l e d g e	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S o c i e t y a n d M u l t i c u l t u r a l S k i l s	Envi ronmentandSustainabi lity	M o r a l , a n d E t h i c a l A w a r e n e s s	I n d i v i d u a n d T e a m w o r k S k i l s	C o m m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a c e c t M a n a g e m e c t t M a n a g e n t t a n t t a n c t t a n c c t t a n c c t t a n c c t t a n c c t a n c c t t a n c c c t c c c c c c c c c c c c c c c	S e l f - D i r e c t e d a n d L i f e L o n g L e a r n i n g	P S O 1	P S O 2	P S O 3
Outcome 1					1			2		2		1			
Outcome 2		2			3			3	3						
Outcome 3		3							2			2			
Outcome 4								2	3			2			
Course Average		3			2			3	3			3			

Course Unitization Plan

Unit No.	Unit Name	Require d Contact Hours	CLOs Addresse d	Reference s Used
Unit 1	Quantitative Aptitude			
	Data interpretation – Introduction and basics to solve data interpretation	4	1,4	1,4
	Data interpretation line graphs, Data interpretation bar graph.	6	1,4	1,4
Unit II	Quants			
	Data interpretation – Pie charts,	2	1,4	1,4
	Data interpretation – Tabular, Data interpretation – case lets.	2	1,4	1,4
Unit III	Statistics	6	1,2	2,3
Unit IV	Functions and graphs	3	1,2	1,2
	graph theory with respect to coding	2	1,2	1,2

	math graph theory and coding problems	2	2,3	2,3
	discrete planar theory and coding problems.		1,2	2,4
Total Conta	ct Hours	<u> </u>		

- 1. Arun Sharma How to prepare for Quantitative Aptitude, Tata Mcgraw Hill.
- 2. R.S. Agarwal Reasoning. Reasoning for competitive exams Agarwal.
- 3. Objective Quantitative Aptitude Oswaal books.
- 4. Test of reasoning and numerical ability, quantitative aptitude book Sahitya bhavan.
- 5. Radian's Quantitative Aptitude.
- 6. Quantitative Aptitude and Reasoning Shyam Saraf / Abhilasha Swarup.
- 7. Fast track objective Arithmetic Rajesh Verma.

Learning Assessment

		Continuous Learning Assessments (50%)								End Semester	
Bloom's Level of Cognitive Task		CLA-1 (10%)		Mid-1 (15%)		CLA-2 (10%)		Mid-2 (15%)		Exam (50%)	
		Th	Pra c	Th	Pra c	Th	Pra c	Th	Pra c	Th	Prac
Level 1	Remember	40%		50%		40%		50%		50%	
Level I	Understand			30%		40%		30%		30%	
Level 2	Apply	60%		50%		60%		50%		50%	
Level 2	Analyse	00%		30%		00%		30%		50%	
Level 3	Evaluate										
Level 5	Create										
	Total	100 %		100 %		100 %		100 %		100%	

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	CSE202	Course Category	Core Course (CC)	L-T-P-C	3 0		1	4
Pre- Requisite Course(s)	CSE 202 (Object Oriented Programmin g using C++)	Co-Requisite Course(s)	NIL Progressiv e Course(s) NIL				IL	
Course Offering	CSE	Professional / Licensing	NIL					
Department		7 Elcensing Standards						

Object Oriented Programming using C++

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Introduce the concepts of Object-Oriented Programming using C++ programming.

Objective 2: Apply the Object-Oriented Concepts such as Class and Object in solving real-world problems.

Objective 3: Demonstrate the principles of inheritance and polymorphism to the design of abstract classes.

Objective 4: Apply exception handling and template creation using STL and interfaces.

	At the end of the course the learner will be able to	Bloom' s Level	Expected Proficienc y Percentage	Expected Attainment Percentage
Outcome 1	Utilize the Object-Oriented Concepts in solving real word problems through C++.	3	70%	65%
Outcome 2	Use Object Oriented Concepts such as Class and Object in solving real- world problems through C++.	3	70%	65%
Outcome 3	Use the principles of Inheritance and Polymorphism through C++.	3	70%	65%
Outcome 4	Use exception handling and template creation using STL and interfaces.	3, 5	70%	65%

Course Outcomes / Course Learning Outcomes (CLOs)

					Dream	rno ma	0.00	ing (hutoo-	mor (T					
CLOs	EngineeringKnowledge	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e 1 o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	sram S o c i e t y a n d M u l t i c u l t u l t u l t u l t u l t s s	E a r n $E n$ $V i$ r o n e n t a n d S u s t a i n a b i l i t y	M o r a l , a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k i l l s	C o m u n i c a t i o n S k i l s	P r o j e c t M a n a g e m e n t a n d F i n a r o j e c t M a n c t n a g e m e c t M a n c t n o c t	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f e c t e a n f c t n g L e a r n g L e a f f f c f f f e c t f f f f f f f f f f f f f f f f f f	P S O 1	P S O 2	P S O 3
Outcome 1	2	3	3	3	2								3	2	
Outcome 2	2	2	3	3	2								2	2	
Outcome 3	2	3	3	2	2								2	2	
Outcome 4	3	3	3	3	2								2	3	
Course	2	3	3	3	2								2	2	
Average															

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

Unit No.	Unit Name	Required Contact Hours	CLOs Addresse d	Ref. Used
Unit 1	INTRODUCTION	11		
1.	Understanding the Object-Oriented World View, A way of viewing world – Agents and Communities, messages and methods, Responsibilities, Classes, Objects, and Methods.	1	1	1
2.	OOP principles	1	1	1,2
3.	An overview of C++, basic program construction - data types, variables, constants - type conversion, operators.	1	1	2
4.	Decision making and looping constructs	1	1	1,2
5.	Arrays, strings and pointers	2	1	1,2
6.	Functions, passing arguments, Returning values, Reference Arguments	1	1	1,2
7.	Storage Classes	1	1	1,2
8.	Dynamic memory management in C++	1	1	1,2
9.	Lab Experiment 1:1. Takes two integer operands and one operator form the user, performs the operation and then prints the result.2. Generate all the prime numbers between 1 and n, where n is a value supplied by the user.	1	1	1
10.	 Lab Experiment 2: 1. Write a program to demonstrate the Inline functions. 2. Programs to understand different function call mechanism. a. call by reference b. call by value 	1	1	1
Unit	FEATURES OF OBJECT-ORIENTED	11		
2	PROGRAMMING			
11.	Concept of classes and objects with real world examples	1	1,2	2
12.	Encapsulation, data hiding using storage classifier	1	1,2	2
13.	Polymorphism, Types of polymorphism, Use- cases	d looping constructs 1 pointers 2 rguments, Returning 1 rguments 1 anagement in C++ 1 operands and one operator 1 rime numbers between 1 1 alue supplied by the user. 1 o demonstrate the Inline 1 ocall by value 1 OBJECT-ORIENTED 11 RAMMING 1 nd objects with real world 1 hiding using storage 1 es of polymorphism, Use- 1 otherwide 1		2
14.	Method overloading, Method overriding	1	1,2	2
15.	Virtual functions	1	1,2	2
16.	Interfaces	1	1,2	2

i	1			
17.	Constructors and destructors	1	1,2	2
18.	Methods, Method calling, Method with object	1	1,2	2
10.	parameters	1	1,2	2
19.	Summary, Putting it all together with hands-on	1	1,2	2
	Lab Experiment 3:			
	1. Write a Program to design a class having			
	static member function Named showcount()			
	which has the property of displaying the			
	number of objects created of the class.			
20.	2. Write a Program using class to process	1	2	2
	Shopping List for a Departmental Store. The			
	list includes details such as the Code No and			
	Price of each item and perform the operations			
	like Adding, Deleting Items to the list and			
	Printing the Total value of a Order.			
	Lab Experiment 4:			
	1. Write a Program which creates & uses array			
	of object of a class. (foreg. implementing the			
	list of Managers of a Company having details			
21.	such as Name, Age, etc).	1	2	2
21.	2. Write a Program to find Maximum out of	1	-	
	Two Numbers using friend function. Note:			
	Here one number is a member of one class and			
	the other number is member of some other			
	class.			
Unit	POLYMORPHISM	13		
3		2	1.0	1.0
22.	Concept of Polymorphism	2	1,2	1,2
23.	Function overloading and its advantages	1	1,2	2
24.	Pitfalls of function overloading	1	1,2	2
25.	Operator overloading	1	1,2	2
26.	Overloading unary operations	1	1,2	2
27.	Overloading binary operators	1	1,2	2
28.	Data Conversion	1	1,2	2
29.	Pitfalls of operators overloading and conversions	1	1,2	2
	Lab Experiment 5:			
	1. Write a Program to swap private data			
	members of classes Named as class_1, class_2			
30.	using friend function.	1	2	2
50.	2. Write a Program to design a class complex	1	L	
	to represent complex numbers. The complex			
	class should use an external function (use it as			
	a friend function) to add two complex			
	numbers. The function should return an object			

	of type complex representing the sum of two complex numbers.			An
31.	 Lab Experiment 6: 1. Write a Program using copy constructor to copy data of an object to another object. 2. Write a Program to allocate memory dynamically for an object of a given class using class's constructor. 	1	2	2
32.	 Lab Experiment 7: 1. Write a program to design a class representing complex numbers and having the functionality of performing addition & multiplication of two complex numbers using operator overloading. 2. Write a Program to overload operators like *, <<, >> using friend function. The following overloaded operators should work for a class vector. 	1	2	2
33.	 Lab Experiment 8: 1.Write a Program to design a class to represent a matrix. The class should have the functionality to insert and retrieve the elements of the matrix. 2.Write a program to overload new/delete operators in a class. 	1	2	2
T T . •4				
Unit 4	INHERITANCE	13		
34.	Inheritance in real world, definition and applications	1	1,2	2
35.	Derived and Base Classes	1	1,2	2
36.	Derived class constructor, Overriding member functions	1	1,2	2
37.	Inheritance in the English distance class	1	1,2	2
38.	Class hierarchies	1	1,2	2
39.	Inheritance and graphics shapes	1	1,2	2
40.	Public and private inheritance, Levels of Inheritance	1	1,2	2
41.	Multiple Inheritance, Ambiguity in Multiple Inheritance with Example	1	1,2	2
41. 42.	Multiple Inheritance, Ambiguity in MultipleInheritance with ExampleAggregation: Classes within classes	1	1,2 1,2	2 2

			10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	An
	 Write a Program to design a class to represent a matrix. The class should have the functionality to insert and retrieve the elements of the matrix. Write a program for developing a matrix 			
	class which can handle integer matrices of different dimensions. Also overload the operator for addition, multiplication &			
	comparison of matrices.			
44.	 Lab Experiment 10: 1. Write a Program illustrating how the constructors are implemented and the order in which they are called when the classes are inherited. Use three classes Named alpha, beta, gamma such that alpha, beta are base class and gamma is derived class inheriting alpha & beta. 2. Write a Program to design a student class representing student roll no. and a test class (derived class of student) representing the scores of the student in various subjects and sports class representing the score in sports. The sports and test class should be inherited by a result class having the functionality to add the scores and display the final result for a student. 	1	2	2
45.	 Lab Experiment 11: 1. Write a program to maintain the records of person with details (Name and Age) and find the eldest among them. The program must use this pointer to return the result. 2. Write a Program to illustrate the use of pointers to objects which are related by inheritance. 	1	2	2
46.	 Lab Experiment 12: 1. Write a program illustrating the use of virtual functions in class. 2. Write a program to design a class representing the information regarding digital library (books, tape: book & tape should be separate classes having the base class as media). The class should have the functionality for adding new item, issuing, deposit etc. the program should use the runtime polymorphism. 	1	2	2

Unit 5	TEMPLATES AND EXCEPTIONS	12		
47.	Templates: Function templates	1	1,2	2
48.	Class templates	1	1,2	2
49.	Exceptions: Need of Exceptions, keywords,	1	1,2	2
50.	Simple and Multiple Exceptions	1	1,2	2
51.	Re-throwing Exception and Exception	1	1.2	2
51.	Specifications, Custom Exception.	1	1,2	2
	Standard Template Library: Containers,			
52.	Algorithms, iterators - potential problems with	1	1,2	2
	STL			
53.	Algorithms: find (), count (), sort (), search (),	1	1,2	2
55.	merge ()	1	1,2	2
54.	Function Objects: for each (), transform ()	1	1,2	2
55.	Sequence Containers: vectors, Lists, Dequeues	1	1,2	2
55.	- Iterators and specialized.	1	1,2	2
	Lab Experiment 13:			
	1. Write a program to show conversion from			
56.	string to int and vice-versa.	1	2	2
	2. Write a program showing data conversion			
	between objects of different classes.			
	Lab Experiment 14:			
	1. Write a program showing data conversion			
	between objects of different classes and			
57.	conversion routine should reside in destination	1	2	2
	class.			
	2. Write a program to copy the contents of one			
	file to another.			
	Lab Experiment 15:			
	1. Write a program to implement the exception			
58.	handling.	1	2	2
	2. Write a program to maintain the elementary			
	database of employee using file concepts.			

- 1. Stanley B. Lippman, Josée Lajoie, Barbara E. Moo. C++ Primer, Fifth Edition,
- 2. Schildt, Herbert, and Herb Schildt. (1997) C/C++ Programmer's Reference. Osborne McGraw-Hill.

Other Resources

- 1. Bruce, Eckel, Pearson, (2002), Thinking in C++, Second edition, Volume 1.
- 2. Robert Lafore, (2001), Object-oriented programming in C++,, Course Sams Publishing, Fourth edition.
- 3. . STL Pocket Reference: Containers, Iterators, and Algorithms , (2003), Lischner, Ray. " O'Reilly Media, Inc.".

Dlaam	2 Torrol of	Conti	End Semester Exam (50%)					
Bloom's Level of Cognitive Task			Theory	(30%)	Dava atta a l			
Cogn	luve Task			CLA- 3 (5%)	Practical (20%)	Th	Prac	
Level 1	Remember	70%	60%	50%	50%	40%	30%	30%
Level I	Understand							
Level 2	Apply	30%	40%	50%	50%	60%	70%	70%
Level 2	Analyse							
Level 3	Evaluate							
Level 5	Create							
Total		100%	100%	100%	100%	100%	100%	100%

Learning Assessment

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	CSE203	Course Category	Core Course (C)	L-T-P-C	3	0	1	4					
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)									
Course Offering Department	CSE	Professional / Licensing Standards	-										

Data Structures II

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** To understand the basic concepts such as abstract data types, linear and non-linear data structures.
- **Objective 2:** To understand the behavior of data structures such as arrays, linked lists, stacks, queues, trees, hash tables, search trees, graphs, and their representations.
- **Objective 3:** To provide an independent view of data structures, including its representation and operations performed on them, which are then linked to sorting, searching and indexing methods to increase the knowledge of usage of data structures in an algorithmic perspective.
- **Objective 4:** To choose an appropriate data structure for a specified application.

	At the end of the course the learner will be able to	Bloom' s Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Discuss the basic concepts of C programming.	2	75%	75%
Outcome 2	Compare and contrast the algorithms for linked list, stack and queue operations.	4	77%	70%
Outcome 3	Illustrate algorithms for Binary Search Trees and AVL Trees.	4	75%	70%
Outcome 4	Analyze Graph traversal and minimum cost spanning tree algorithms.	4	72%	70%
Outcome 5	Distinguish searching and sorting techniques.	3	78%	80%

Course Outcomes / Course Learning Outcomes (CLOs)

Course Articulat	ION IVIS	urix (C	LU)	io Pro						rlu,)				
						gram i tcome									
CLOs	E ng in ee ri ng K no wl ed ge	Pr ob le m A na ly si s	De sig n an d De vel op me nt	An aly sis, De sig n an d Re sea rch	Moder n Tool and ICT Usage	So cie ty an d M ulti cul tur al Ski lls	En vir on me nt an d Su sta ina bili ty	M o r a l, a n d E t h i c a l A w a r e s s	Ind ivi du al an d Te am wo rk Ski lls	Co m un ica tio n Sk ills	P r o j e c t M a n a g e m e n t a n d F i n a n c e	S el f- D ir e ct e d a n d L if e ct e d a n d L if e ct e d a n f C n f - D ir e ct e a n f c f c f o n g L f o n g L f o n g L f o n g S c f o n g S S (S S S S S S S S S S S S S S S S	P (]		P § 3
Outcome 1	3	3	1	-	-	-	-	-	-	-	-	2	2	2	2
Outcome 2	3	3	2	-	-	-	-	-	-	-	-	1	3	3	3
Outcome 3	3	3	2	1	-	-	-	-	-	-	-	1	3	3	3
Outcome 4	3	3	2	1	-	-	-	-	-	-	-	1	3	3	3
Outcome 5	3	3	1	-	-	-	-	-	-	-	-	1	3	3	3
Course Average	3	3	2	1	-	-	-	-	-	-	-	1	3	3	3

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
Unit 1	REVISITING LINEAR DATA STRUCTURES	09		
	Revision of Linear and nonlinear data structures	1	1	1

				An
	Application of Linked List: Polynomial Addition, Polynomial Multiplication	2	1, 3	6
	Maps and Dictionaries: Linked lists	1	1, 3	1
	implementation Mathematical Notation Translation: infix,			
	postfix, infix to postfix, Evaluating	2	1, 3	1
	Mathematical Expression.	2	1, 5	1
	Multiple Stacks. Implementation of Multiple	1	1.0	<i>.</i>
	Stack.	1	1, 3	6
	Multiple queues, Implementation of multiple	1	1, 3	6
	queues	1	1, 5	0
	Priority queues: Implementing Priority Queue	1	1, 3	1, 2
TT • .	using List	-	-, 0	-, -
Unit 2	ADVANCED SEARCHING AND SORTING TECHNIQUES	8		
	Introduction to Hash functions and types of	1	2, 4, 5	1
	hash functions.	-	, ., •	-
	Collision, Collision resolution techniques, Perfect hashing.	2	2, 4, 5	1
	Introduction to External sorting, Sorting with	2	2, 3, 4	6
	Disks: K-Way Merging		_, c, .	
	Sorting with Disks: Buffer Handling for	1	2, 3, 4	1,6
	Parallel Operation	1	2.2.4	
	Sorting with Tapes: Balanced Merge Sort Sorting with Tapes: Polyphase Merge.	1	$\frac{2, 3, 4}{2, 3, 4}$	1,6 1,6
Unit	Sorting with Tapes. Polyphase Merge.	1	2, 3, 4	1,0
3	ADVANCED TOPICS ON TREES	10		
	Introduction to Threaded Binary Tree,			
	Traversal of Threaded Binary Tree, Deleting	2	1, 3	1, 6
	Threaded Binary Tree.			
	Threaded Binary Search Trees, insertion and	2	1 0	1
	deletion operations. Finding largest element in	2	1, 3	1
	Threaded BST Introduction to AVL Trees: Height of AVL			
	Tree, Operations on an AVL Tree: insertion,	2	1, 3	1
	deletion.	-	1, 5	1
	m-Way search tree: Index and Searching	1	1, 3	1
	B-Tree, Operations on B-Tree: Searching,			
	Inserting, Deleting from a B-Tree	1	1, 3	1
	B + Tree, Operations on B+ -Tree: Searching,			
	Inserting, Deleting from a B+ -Tree,	2	1, 3	1
	Introduction to B* tree			
Unit 4	GRAPHS	10		
	Introduction to Graphs, basic terminology	2	1, 3	1
	Representation of Graphs: Adjacency Matrix	2	1, 3	1
	and Adjacency List		1, 5	Ĩ
	Operations on a Graph: creation, insertion,	2	1, 3	1
	and deletion of nodes.	_	, -	_

	Graph traversals: BFS and DFS, Topological sort	2	1, 3, 4	1
	Minimal Spanning Tree: Prims Algorithm, Kruskal Algorithm	2	1, 3, 4	1
Unit 5	ADVANCED TOPICS ON GRAPHS	8		
	Finding Shortest Paths: Shortest Path for a given Source and Destination	2	1, 3, 4	1
	Finding Shortest Paths: Shortest path among all-pair of vertices	2	1, 3, 4	1
	Directed Acyclic Graphs, Hamiltonian cycle, Euler's circuits	2	1, 3, 4	1
	Graph Colouring	1	1, 3, 4	6
	Bipartite Graph.	1	1, 3, 4	6
	Total Contact Hours	45		

- "Data Structures -- A Pseudo code approach with C" by Richard R. Gilberg & Behrouz A. Forouzan, 2nd edition, 2011. Cengage Learning. Imprint: Thomson Press (India) Ltd.
- 2. "Data Structures Using C" by Aaron M. Tanenbaum, Yedidvah Langsam, and Moshe J. Augenstein. Pearson Publishers, 2019.

References:

- 3. Programming with C, Byron Gottfried, McGraw hill Education, Fourteenth reprint, 2016.
- 4. "Fundamental of Data Structures", (Schaums Series) Tata-McGraw-Hill
- 5. Data structures and Algorithm Analysis in C, Mark Allen Weiss, Pearson publications, Second Edition Programming in C. P. Dey and M Ghosh, Second Edition, Oxford University Press.
- 6. "Fundamentals of data structure in C" by Horowitz, Sahani & Anderson Freed, Computer Science Press.
- 7. G. A. V. Pai: "Data Structures & Algorithms; Concepts, Techniques & Algorithms" Tata McGraw Hill.

Learning Assessment

		Continuou	s Learning	g Assessm	ents (50%)	End Semester Exam			
	evel of Cognitive	Theory (30)%)				(50%)		
Task		CLA-1 (6%)	Mid- 1 (12%)	CLA- 2 (6%)	CLA-3 (6%)	Practical (20%)	Th (30%)	Prac (20%)	
Level 1	Remember	70%	60%	30%	30%	50%	60%	50%	
	Understand	/0%	00%	50%	50%	5070	00%	30%	
Level 2	Apply	200/	100/	70%	700/	500/	400/	500/	
	Analyze	- 30%	40%		70%	50%	40%	50%	
Level 3	Evaluate								
	Create								
Total	Total		100%	100%	100%	100%	100%	100%	

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	CSE 204	Course Category	Professional Core (C)	L-T-P-C	3	0	1	4
Pre-Requisite Course(s)	Basic Mathematics and Science, Basics of Electrical and Electronics Engineering	Co-Requisite Course(s)	-	Progressive Course(s)	-			
Course	ECE	Professional /						
Offering		Licensing						
Department		Standards						
Board of		Academic						
Studies		Council						
Approval Date		Approval Date						

Digital Electronics

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To acquire the basic knowledge of digital logic levels and its application to understand the digital electronic circuits.

Objective 2: To impart how to design Digital Circuits both theoretically and practically.

	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Understand various number system and its application in digital electronics and compare different types of logic families.	2	75%	65%
Outcome 2	Apply mapping, mathematical methods and logical tools to design digital circuits.	3	75%	65%
Outcome 3	Designing of various combinational, synchronous, and asynchronous sequential circuits.	4	75%	65%
Outcome 4	Explain the functioning of various memory devices.	3	75%	65%

Course Outcomes / Course Learning Outcomes (CLOs)

					Prog	gram I	Learnir	ng Ou	tcome	s (PLO)				
CL Os	Engi neeri ng Kno wled ge	Pro ble m An alys is	Desig n and Devel opme nt	Ana lysi s, Des ign and Res earc h	Mo der n To ol and IC T Us age	Socie ty and Multi cultur al Skills	Envir onme nt and Sustai nabili ty	Mor al, and Ethi cal Awa rene ss	Indi vidu al and Tea mwo rk Skill s	Comm unicati on Skills	Proje ct Mana geme nt and Finan ce	Self - Dir ecte d and Life lon g Lea rnin g	P S O 1	P S O 2	P S O 3
Out com e 1	3	2	3	3	2	-	-	-	-	-	3	3	2	1	2
Out com e 2	3	3	3	3	2	3	1	-	3	2	3	3	3	3	3
Out com e 3	3	2	1	1	1	-	-	-	1	-	2	3	1	1	1
Out com e 4	3	2	1	2	2	-	-	-	1	-	2	3	1	1	3
Cou rse Ave rag e	3	2	3	2	2	3	1	-	3	2	3	3	2	2	3

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
Unit 1	Digital Fundamentals	15		
	4 and 5 variable K-maps	2	1,2	1,2
	1's and 2's complements	2	1	1
	Codes – Binary, BCD, Excess 3, Gray, Alphanumeric codes (<i>Active Learning</i>)	2	1,2	1
	Sum of products and product of sums, Minterms and Maxterms	1	1	1
	Quine-McCluskey method of minimization	2	1,2	1,3
	Lab Experiment 1: Realization of Basic Logic Gates.	3	2	1,2
	Lab Experiment 2: Design of Code Converters (Binary to Gray) & (Gray to Binary).	3	2	1

Unit 2	Combinational Circuit Design	18		
	4 bit Adder and Subtractor	1	1	1,2,3
	Binary Parallel Adder – Carry look ahead adder, BCD		-	
	Adder	2	1,2	2,3
	Multiplexer, Demultiplexer	2	1,2	1
	Magnitude Comparator	2	1,2	1,3
	Decoder, Encoder, Priority Encoder (Active Learning)	2	1,2	2,3
	<i>Lab Experiment 3:</i> Design of Half-Adder/Subtractor, Full-Adder/Subtractor, Multiplexers/De Multiplexers.	3	3	1,2
	Lab Experiment 4: Design of Decoder and Encoder/ BCD 7SSD.	3	3	2,3
	<i>Lab Experiment 5:</i> Design of Magnitude Comparator (2-bit).	3	3	1,3
Unit 3	Synchronous Sequential Circuits	21		
	Flip flops – SR, JK, T, D, Master/Slave FF – operation and excitation tables, Triggering of FF	2	1,2	3,4
	Analysis and design of clocked sequential circuits – Design – Moore/Mealy models	2	1	4
	State minimization, State assignment	1	1	4
	Circuit implementation – Design of Counters – Ripple Counters, Ring Counters	2	1,2	4
	Shift Registers, Universal Shift Register	2	1,2	3,4
	<i>Lab Experiment 6:</i> Design and Verification of Flip- Flops using IC.	3	3	3,4
	<i>Lab Experiment 7:</i> Design of Asynchronous Counter (Any Mod, Up and Down, Jhonson and Ring).	3	3	4
	<i>Lab Experiment 8:</i> Design of Synchronous Counter (Any Mod, Decade counter 741s90).	3	3	4
	<i>Lab Experiment 9:</i> Design of Universal Shift Register (Serial to Parallel, Parallel to Serial, Serial to Serial and Parallel to Parallel Converters).	3	3	3,4
Unit 4	Asynchronous Sequential Circuits	9		
	Stable and unstable states, output specifications	3	1,2,3	2,3
	Cycles and races, state reduction, race free assignments	2	3	1,3
	Hazards, Essential Hazards	2	2,3	1,3
	Pulse mode sequential circuits, Design of Hazard free circuits	2	1,2,3	1,3
Unit 5	Memory Devices	12		
	Classification of memories – ROM – ROM organization – PROM – EPROM – EEPROM – EAPROM	2	4	1,5
	RAM – RAM organization – Write operation – Read operation	1	4	2,5
	Programmable Logic Devices – Programmable Logic Array (PLA) – Programmable Array Logic (PAL)	2	4	5
	Field Programmable Gate Arrays (FPGA)	1	4	5
	Implementation of combinational logic circuits using ROM, PLA, PAL.	3	4	3,5
	Lab Experiment 10: Design & Verification of Memory (SRAM)	3	4	2,5
	Total Contact Hours (Theory + Lab)		75	<u> </u>
	Total Contact Hours (Theory + Lab)		75	

- 1. M. Morris Mano, "Digital Design", 5th Edition, Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2014.
- 2. John F. Wakerly, "Digital Design", Fourth Edition, Pearson/PHI, 2008.
- 3. John.M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.
- 4. Charles H.Roth. "Fundamentals of Logic Design", 6th Edition, Thomson Learning, 2013.
- 5. Anil K. Maini, "Digital Electronics", Wiley, 2014.

Other Resources

- 1. Thomas L. Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011.
- 2. Donald D.Givone, "Digital Principles and Design", TMH, 2003.

Learning Assessment (Theory)

Dloor	n's Level of	Continuo	Continuous Learning Assessments (40%)								
	nitive Task	CLA-1 (10%)	CLA-2 (10%)	CLA-3 (10%)	Mid Sem (10%)	Exam (30%)					
Level 1	Remember	55%	40%	40%	40%	46%					
Level I	Understand										
Level 2	Apply	45%	60%	60%	60%	46%					
Level 2	Analyse										
Level 3	Evaluate					8%					
Level 5	Create					0 %0					
	Total	100%	100%	100%	100%	100%					

Learning Assessment (Practical)

		Continuous Le	arning Assessmen	nts (20%)	End Semester Exam (10%)
	n's Level of nitive Task	Lab Performance (10%)	Observation Note (5%)	Model Exam (5%)	- Exam (10%)
Level 1	Remember	30%	80 %	30%	30%
Level I	Understand	30%	80 70	30%	30%
Level 2	Apply	70%	20%	70%	70%
Level 2	Analyse	70%	20%	70%	/0%
Level 3	Evaluate				
Level 5	Create				
	Total	100%	100%	100%	100%

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Hands on With Python

Course Code	CSE 205	Course Category	Core Course (CC)	L-T-P-C	0	0	2	2
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	ECE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To understand python programming concepts clearly.

Objective 2: To make students able to write python programs clearly.

Objective 3: To apply these concepts to write programs in different domains.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course, the learner will be able to	Bloom' s Level	Expected Proficienc y Percentage	Expected Attainmen t Percentag e
Outcome 1	Demonstrate efficient data management by selecting appropriate data structures for mutable and immutable types.	2	85%	80%
Outcome 2	Demonstrate clear code logic and improved readability through proficient use of data type operations.	1,2	85%	80%
Outcome 3	Design programs with robust control flow and modular code structures based on flow control statements and functions	4	85%	80%
Outcome 4	Develop skills to design resilient software capable of handling errors gracefully.	4	75%	70%

	Program Learning Outcomes (PLO)														
CLOs	E n gi n e e r i n gK n o w l e d g e	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o l a n d I C T U s a g e	$\begin{array}{c} \text{gram} \\ \text{S} \\ \text{o} \\ \text{c} \\ \text{i} \\ \text{e} \\ \text{t} \\ \text{y} \\ \text{a} \\ \text{n} \\ \text{d} \\ \text{M} \\ \text{u} \\ 1 \\ \text{t} \\ \text{i} \\ \text{c} \\ \text{u} \\ 1 \\ \text{t} \\ \text{u} \\ 1 \\ \text{s} \\ \begin{array}{c} \text{s} \\ \text{s} \\ 1 \\ 1 \\ \end{array} \right.$	E n v i r o n m e n t a n d S u s t a i n a b i i t y	M o r a l , a n d E t h i c a l A w a r e s s	I n d i v i d u a l a n d T e a m w o r k S k i l l s	C o m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a c e	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f e c t e n g L e n g	P S O 1	P S O 2	P S O 3
Outcome 1	1	1	3		2							3	1	1	3
Outcome 2	1	1		2	2				2			3	1	1	3
Outcome 3	1	1		2	2				2			3	1	1	3
Outcome 4	3	3	3	3	2				3			3	1	1	3
Course Average	2	2	3	3	2				2			3	1	1	3

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

Unit No.	Unit Name	Required Contact Hours	CLOs Addresse d	Reference s Used
Unit 1	Introduction: Language Fundamentals	6		
	Features, Limitations, advantages, and applications of python	2	1	1,2
	Identifiers and Reserved words	1	1	1,2
	Data types: Fundamental data types (int, float, complex, bool, string), Mutable vs Immutable	1	1	1,2

	Derived Data types: Byte, Byte array, List, tuple, set, frozenset, range, dictionary, None	2	1	1,2
Unit 2	Python Operators	6		
	Arithmetic Operators	1	2	1,2
	Relational operators, chaining of relational operators	1	2	1,2
	Logical Operators, Bitwise operators	2	2	1,2
	Module, Input & Output statements	2	2	1,2
Unit 3	Python: Flow control statements	6		
	Conditional/selection statements	2	3	1,2
	Iterative Statements: For, while, For-else	2	3	1,2
	Transfer statements: break, continue, pass	2	3	1,2
Unit 4	Python: Functions	6		
	Inbuilt functions and user defined functions	2	3	1,2
	Filter, Map and reduce	2	3	1,2
	Global and local variables	2	3	1,2
Unit 5	Python advanced topics	6		
	Object oriented programming	3	4	1,2
	Try-except block	3	4	1,2
	Total Contact Hours		30	1

- 1. Learn complete python in simple way, Durgsoft Learning material (online available)
- 2. PYTHON PROGRAMMING EXERCISES, GENTLY EXPLAINED by Al Sweigart, Inventwithpython.com.

Other Resources

1. The Joy of Computing using Python by Prof. Sudarshan Iyengar, IIT Ropar (nptel course)

Learning Assessment

			Conti	End Semester								
Bloom's Level of Cognitive Task		CLA-1 (10%)		Mid-1 (15%)		CLA-2 (10%)		Mid-2 (15%)		Exam (50%)		
		Th	Pra	Th	Pra	Th	Pra	Th	Pra	Th	Prac	
			с		с		с		с			
Level 1	Remember	60%	40	50%	40	40%	40	50%	40	40%	40%	
Level I	Understand		%		%		%		%			
Level 2	Apply	40%	60	50%	60	60%	60	50%	60	60%	60%	
Level 2	Analyze		%		%		%		%			
Level 3 Evaluate												

					100 Million (1997)	17551433
Create						
Total	100 %	100 %	100 %	100 %	100%	

SEMESTER IV

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	AEC 104	Course Category	Ability Enhancement Course (AEC)	L-T/D-P/Pr-C	1	0	1	2
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	Literature & Languages	Professional / Licensing Standards						

Creativity and Critical Thinking Skills

Course Objectives:

Objective 1: Identify key concepts associated with creative problem-solving and critical analysis.

Objective 2: Interpret and summarize various models and frameworks used in fostering creative and critical thinking skills.

Objective 3: Apply divergent thinking methods to generate innovative solutions to multifaceted problems.

Objective 4: Assess and compare the strengths and weaknesses of various critical thinking approaches in decision-making.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Define and describe fundamental concepts and theories related to creativity and critical thinking.	1	80%	80%
Outcome 2	Explain the significance of creativity and critical thinking in problem-solving and decision-making processes.	2	80%	60%
Outcome 3	Implement critical thinking strategies to analyse and evaluate information and arguments effectively.	3	80%	70%
Outcome 4	Analyse and assess the effectiveness of specific creative thinking methods in addressing real-world problems.	4	80%	70%

Course Outcomes (COs)

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

					Pr	ogram l	Learnin	g Outco	omes (P	LO)					
CL Os	Engi neeri ng Kno wled ge	Pro ble m An alys is	Desig n and Devel opme nt	Ana lysi s, Des ign and Res earc h	Mo der n To ol and IC T Usa ge	Societ y and Multi cultur al Skills	Envir onme nt and Sustai nabilit y	Mor al, and Ethic al Awa renes s	Indi vidu al and Tea mwo rk Skill s	Comm unicati on Skills	Projec t Mana geme nt and Finan ce	Self - Dir ecte d and Life lon g Lea	P S O 1	P S O 2	P S O 3

								rnin g		And
Out com e 1		1	3	3		3	3	3		
Out com e 2	3		3	3		3	3	3		
Out com e 3	3	3		3		3	3	3		
Out com e 4	3	3	3	3		3	3	3		
Cou rse Ave rag e	3	3	3	3		3	3	3		

Unit	Unit Name	Required	CLOs	References
No.	Introduction to Creativity and Critica Thinking Introduction to key concepts Importance in personal and professional contexts Understanding the differences Real-world applications Overcoming Mental Blocks Identifying and addressing barriers Exercises for mental flexibility Critical Thinking Skills Recognizing common pitfalls Examples and group discussion Techniques for assessing information credibility Case studies and research exercises Application of Creative Solutions Practical problem-solving exercises	Contact Hours	Addressed	Used
Unit 1	Introduction to Creativity and Critical Thinking	6		
	Introduction to key concepts	2	1,3	1
	Importance in personal and professional contexts	2	1,3	1,2
	Understanding the differences	1	2,3	1,4
	Real-world applications	1	1,3	1,3
Unit 2	Overcoming Mental Blocks	6		
	Identifying and addressing barriers	3	1	14
	Exercises for mental flexibility	3	4	1,2
Unit 3	Critical Thinking Skills	6		
	Recognizing common pitfalls	1	1,3	1,2
	Examples and group discussion	1	2,3	1,2
		2	1,3	1
	Case studies and research exercises	2	1,3	3
Unit 4	Application of Creative Solutions	6		
	Practical problem-solving exercises	1	1,3	1,4
	Group projects and case studies	2	2,3	2,3
	Integrating ethics into creative and critical thinking	1	1,3	1
	Discussions on ethical dilemmas and decision-making	2	1,3	3
Unit 5	Application of Creative Solutions	6		
	Quizzes on concepts and techniques	1	1,3	1,2
	Individual and group assignments	1	2,3	1,2

Applying creativity and critical thinking to a real-world scenario	2	1,3	1
Presentation and peer evaluation	2	1,3	3
Total Contact Hours		30	

- 1. *Creative Confidence: Unleashing the Creative Potential Within Us All* by Tom Kelley and David Kelley
- 2. Critical Thinking: An Introduction by Alec Fisher
- 3. *Think Like a Freak: The Authors of Freakonomics Offer to Retrain Your Brain* by Steven D. Levitt and Stephen J. Dubner
- 4. *Creative Intelligence: Harnessing the Power to Create, Connect, and Inspire* by Bruce Nussbaum

Learning Assessment (Macro)

Bloom's I	Level of Cognitive	Continuous Learning Assessments (75%)								
Diooni S I	Task	CLA-1 (20%)	CLA-2 (20%)	CLA-3 (20%)	Project Work (45%)					
Level 1	Remember	30%		10%						
Level 1	Understand	50%		1070						
Level 2	Apply	70%	100%	90%	100%					
Level 2	Analyse	7070	10070	2070	10070					
Level 3	Evaluate									
	Create									
	Total	100%	100%	100%	100%					

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	CSE 207	Course Category	Core Course (CC)	L-T-P-C	3	0	1	4
Pre-Requisite Course(s)	CSE 107	Co-Requisite Course(s)	CSE202	Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Design and Analysis of Algorithm

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** To impart basic skills to analyse the performance of algorithms.
- **Objective 2:** To train the students to choose appropriate algorithm design techniques for solving problems.
- **Objective 3:** To make aware how the choice of data structures and algorithm design methods impact the performance of programs.
- **Objective 4:** To impart basic proficiency to deal with NP problems and to develop approximate algorithms wherever required
- **Objective 5:** To create an understanding of the basic issues of complex and efficient algorithms.
- **Objective 6:** To introduce advanced topics of Backtracking and Branch and bound algorithms required in state space search.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Choose appropriate algorithm design techniques for solving problems.	4	70%	65%
Outcome 2	Describe how the choice of data structures and algorithm design methods impact the performance of programs.	2	70%	65%
Outcome 3	Analyse the performance of algorithms.	4	70%	65%
Outcome 4	Develop approximate algorithms with NP problems.	4	70%	65%
Outcome 5	Explain the complexity and efficiency of algorithms.	3	70%	65%
Outcome 6	Demonstrate Backtracking, Branch and bound algorithms required in state space search.	4	70%	65%

Course Outcomes / Course Learning Outcomes (CLOs)

					Progr			<u> </u>				,			
CLOs	En gi ne eri ng K no wl ed ge	Pr ob le m A na lys is	De sig n an d De ve lo p m en t	A na lys is, De sig n an d Re se ar ch	M od er n To ol an d IC T Us ag e	So cie ty an d M ult ic ult ult ur al Sk ill s	En vir on m en t an d Su sta in ab ilit y	M or al, an d Et hi cal A wa re ne ss	In di vi du al an d Te a m w or k Sk ill s	Co m un ica tio n Sk ill s	Pr oj ect M an ag e m en t an d Fi na nc e	Se lf- Di re cte d an d Li fe Lo ng Le ar ni ng	PS O 1	PS O 2	PS O 3
Outcome 1	2	3	3	3	3	1			2		2	2	2	2	2
Outcome 2	2	2	3	2	2	1			2		2	3	2	2	2
Outcome 3	2	3	3	3	2	1			2		2	2	2	2	2
Outcome 4	3	3	3	2	3	1			2		3	3	3	2	3
Outcome 5	3	3	3	3	2	1			2		2	3	2	2	2
Outcome 6	3	3	3	3	2	1			2		2	2	3	3	2
Course Average	3	3	3	3	2	1			2		2	3	2	2	2

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

Unit Number	Unit Name	Required Contact hours	CLOs Addressed	References Used
UNIT I	Introduction			
	Algorithmic thinking & motivation with examples	2	1,3	1
	Reinforcing the concepts of Data Structures with examples	3	1,4	1,2
	Complexity analysis of algorithms: big O, omega, and theta notation	3	2	1
	Analysis of Sorting and Searching	2	2	2
	Hash table	3	4	1
	Recursive and non-recursive algorithms.	2	4	1
Unit II	General Problem Solving (GPS) techniques			
	Divide and conquer: Merge sort	2	1,3	1
	Quicksort	2	1,3	1,2
	BST	2	1,3	1,2
	Master method for Complexity analysis	2	2	1,2

				Andhr
	Greedy method: Fractional Knapsack	1	3,4	1
	Minimum spanning trees (Prim's & Kruskal's)	2	4	1,2
	Shortest paths: Dijkstra's algorithm	1	4	1,2
	Huffman coding	1	4	1,2
-	Dynamic Programming: 0/1 Knapsack	1	1,4	1,2
	All-to-all shortest paths	1	4	1,2
-	Lab: Shortest paths: Dijkstra's program	1	4	1,2
	Lab: Huffman coding program	1	4	1,2
	Lab: Dynamic Programming: 0/1 Knapsack	1	1,4	1,2
	program	2	4	1.0
	Lab: All-to-all shortest paths program	2	4	1,2
UNIT III	Search techniques and Randomised algorithms			
	BFS & DFS, Backtracking	3	2,4	1
	8-Queen's problem	2	4	
	Knight's tour	2	4	1
	Travelling Salesman Problem (TSP)	2	3,4	1
	Branch-and-bound: 16-puzzle problem	2	4	1
	TSSP	2	4	1
	Randomized algorithms: Playing Cards	2	4	2,3
UNIT IV	Pattern matching and Amortized analysis			
	Pattern matching algorithms: Brute-force,	1	4	4
	Boyer Moore	2	4	4
	KMP algorithms	1	3,4	4
	Algorithm analysis: Probabilistic Analysis	1	2	4
	Amortized analysis,	1	2	4
	Competitive analysis	1	2	4
UNIT V	NP problems			
	Non-polynomial complexity: examples and analysis	2	4	2,4
	Vertex cover	1	3,4	2
	Set cover	1	4	2,4
	TSP	1	4	2,4
	3-SAT	1	4	2,4
	Approximation Algorithms: Vertex cover	1	4	2,4
	TSP	1	4	2,4
	Set cover	1	4	2,4
	Total contact hours		65	

1. Cormen Leiserson & Rivest Stein (2009). Introduction to Algorithms, 3rd Edition, MIT Press.

3. Michel Goodrich & Roberto Tamassia (2006). "Algorithm design-foundation, analysis & internet examples", Wiley., 2006

4. A V Aho, J E Hopcroft, J D Ullman, "Design and Analysis of Algorithms", Addison-Wesley Publishing.

Other Resources

- 1. Algorithm Design, by J. Kleinberg and E. Tardos, Addison-Wesley, 2005
- 2. Algorithms, by S. Dasgupta, C. Papadimitriou, and U. Vazirani, McGraw-Hill, 2006

Nicol, A. M., & Pexman, P. M. (1999). Presenting your findings: A practical guide for creating tables, 2nd ed. Washington DC: American Psychological Association.

2. Online Resources with Link

Author's last name, Initial(s). (year). Book title. edition, Place of publication: Publisher Name. Source Link

Example: Aristotle. (1994). *Nicomachean ethics*. 3rd ed, Chicago: Web Atomics. Retrieved from http://classics.mit.edu/Aristotle/nicomachaen.html

Learning Assessment:

Bloom's Level of Cognitive Task		Continue	Continuous Learning Assessments (50%)							
		Theory (30%)	Pract (20%)	Th (30 %)	Prac t (20 %)				
		CLA-1 (6%)	Mid- 1 (12%)	CLA- 2 (6%)	CLA-3 (6%)			,		
Level 1	Remember	60%	30%	30%	30%	30%	30%	30%		
Level I	Understand	00%	50%	30%	30%	30%	30%	30%		
Level 2	Apply	40%	70%	70%	70%	70%	70%	70%		
Level 2	Analyse	40%	7070	70%	70%	7070	7070	7070		
Level 3	Evaluate									
Level 5	Create									
Total		100%	100%	100%	100%	100%	100 %	100 %		

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

		Probability and	I Statistics					
Course Code	CSE 208	Course Category	Core Course (CC)	L-T-P-C	3	0	0	3
Pre-Requisite		Co-Requisite		Progressive				
Course(s)		Course(s)		Course(s)				
Course Offering		Professional /						
Department	ECE	Licensing						
		Standards						

Probability and Statistics

Course Objectives:

Objective 1 After this course, students should be able to understand the compute basic probabilities, formulate a problem using random variables, analyze sample data for possible conclusions about population.

Objective 2: After taking this course, students will be able to use calculators and tables to perform simple statistical analyses for small samples and use popular statistics packages, such as SAS, SPSS, S-Plus, R or MATLAB, to perform simple and sophisticated analyses for large samples.

Objective 3: Students who are interested in becoming statisticians themselves can build a solid foundation in probability and statistics through this course but should plan on additional coursework for thorough and comprehensive preparation.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
CO 1	Describe the basic knowledge on fundamental probability concepts, including random variable, probability of an event, additive rules and conditional probability Bayes' theorem S understand the basic statistical concepts and measures	2	70%	75%
CO 2	Demonstrate the concept of the central limit theorem understand several well-known distributions, including, Geometrical, Negative Binomial, Pascal, Normal and Exponential Distribution	4	70%	73%
CO 3	Apply the central limit theorem to sampling distribution use estimation technique to determine point estimates confidence interval and sample size.	3	75%	80%
CO 4	Interpret and Analyses in SAS, S-PLUS, R or MATLAB	4	70%	70%
CO 5	Apply central limit theorem and hypothesis testing	3	70%	72%

Course Outcomes (COs)

	Program Learning Outcomes (PLO)														
CL Os	Engi neeri ng Kno wled ge	Pro ble m An aly sis	Desig n and Devel opme nt	An aly sis, De sig n and Res ear ch	M od er n To ol an d IC T Us ag e	Socie ty and Multi cultur al Skills	Envir onme nt and Sustai nabili ty	Mor al, and Ethi cal Awa rene ss	Indi vidu al and Tea mw ork Skil Is	Comm unicati on Skills	Proje ct Mana geme nt and Finan ce	Sel f- Dir ect ed and Lif elo ng Le arn ing	P S O 1	P S O 2	P S O 3
Outc ome 1	2	3		2					2						
Outc ome 2	3	2		1					2						
Outc ome 3	2	3		1					2						
Outc ome 4	2	3		2					3						
Outc ome 4	3	2		2					3						
Outc ome 5	2	3		2					3						
Cou rse Ave rage	2	3		2					3						

Course Articulation Matrix (CLO) to (PLO)

Learning Assessment (Macro)

Bloom's Level of Cognitive Task		Contin	uous Lear (60	End Semester Assessments (40%)		
		CLA-1 (15%)	Mid-1 (25%)	CLA-2 (10%)	CLA-3 (10%)	
Level 1	Remember	30%	25%	10%	20%	25%
Level I	Understand	30%	30%	30%	30%	30%
Level 2	Apply	20%	25%	30%	30%	25%
Level 2	Analyse	20%	20%	30%	20%	20%

Level 3 Evaluate					
Create					
Total	100%	100%	100%	100%	100%

Unit No.	Description of Topic	Contact hours	CLOs Addressed	Reference
	<u>Unit I – Introduction to Probability</u>	7		
	Basic principle of counting, multinomial coefficients	1	1	1
	Axioms of probability, computing probabilities - unions, intersections, and Inclusion-exclusion principle	2	1	1
Unit I	Conditional probability, Independent events	2	1	1
	Bayes' theorem, law of total probability	2	1	1
	Unit II- Random variables and <u>distributions</u>	12		
	Random variables, cumulative distribution function	1	1	1
	Discrete random variables	1	1	1
	Cumulative distribution function and its properties	1	1	1
	Expectation, variance and standard deviation of discrete random variables, conditional expectation	1	1	1
	Bernoulli and binomial distributions, their expectations and variances	1	1	1
Unit II	Poisson, geometric and negative binomial distribution expectations and variances	1	1	1
	Continuous random variables	1	1	1
	Expectation and variance, Conditional expect	2	1	1
	Uniform and exponential distributions	1	1	1
	Normal distribution , Student's t-distribution	2	1	1
	<u>Unit III – Joint probability distributions</u> <u>and CLT</u>	8		
Unit III	Joint distribution of two random variables - discrete and continuous	2	2	1
	Change of variables under integration (Determinant of Jacobian), Independent random variables and their sum,	3	2	1

				17553
	Central limit theorem	1	2	1
	Covariance and correlation between random variables	2	2	1
	<u>Unit IV – Descriptive statistics and linear</u> <u>regression</u>	8		
	Graphical representation of data -Histograms, scatter plots & time plots	1	3,4	1
	Descriptive statistics	2	1	2,3
Unit IV	Correlation – Pearson's correlation coefficient	2	3	2,3
	Linear regression, Goodness of fit, Normal equations for least-squares regression,	3	3,5	2,3
	<u>Unit V – Introduction to statistical</u> <u>inference</u>	10		
	Population, sample and statistics	2	3	2,3
	Point estimation of population parameters	1	3	2,3
	Confidence intervals for population mean, and population proportion	2	3	2,3
	P-values, Significance level, Tests of significance for population mean, population proportion.	3	3,4	2,3
	Types of errors, contingency table, sensitivity, specificity, power of a test.	2	3	2,3

- 1. S. Ross, (2018) A First course in probability, Pearson Education; Ninth edition.
- 2. M. Baron, (2006), Probability and Statistics for computer scientists, Chapman and Hall/CRC; First edition.
- 3. Douglas C. Montgomery, George C. Runger, (2016) Applied Statistics and Probability for Engineers, Wiley; Sixth edition.

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	CSE 209	Course Category	Core Course (C)	L-T-P-C	3	0	1	4
Pre- Requisite Course(s)	Data Structures	Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Database Management Systems

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** Understand the advantages of DBMS over traditional file systems and characteristics of DBMS.
- **Objective 2:** Design ER-models to represent data of the organization.
- **Objective 3:** Design relational databases and execute various queries on the database using SQL.
- **Objective 4:** Gain knowledge of various anomalies that can occur in the database and overcome those with the help of normal forms.
- **Objective 5:** comprehend the purpose of transaction processing and concurrency control protocols.
- **Objective 6:** Learn indexing schemes used in DBMS for the fast retrieval of data from the database.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom' s Level	Expected Proficienc y Percentage	Expected Attainment Percentage
Outcome 1	Identify and design database structure for a system.	4	70%	65%
Outcome 2	Design relational databases and execute queries on the database using SQL.	3	70%	65%
Outcome 3	Implement concurrency control protocols for transaction processing systems.	3	70%	65%
Outcome 4	Use indexing schemes for fast retrieval of data from the database.	3	70%	65%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

	Program Learning Outcomes (PLO)														
CLOs	E n g i n e e r i n g K n o w l e d g e	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S o c i e t y a n d M u l t i c u l t u l t u l t u l t u l t s	E n v i r o n m e n t a n d S u s t a i n d S u s t a i i r o n m e n t a n d S u s t t a i i r o n t y i i r	M o r a l, a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m W o r k S k i l l s	C o m u n i c a t i o n S k i 1 1 s	P r o j e c t M a n a g e m e n t a n d F i n a n c e	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f e c t e a n g L e a r n g	P S O 1	P S O 2	P S O 3
Outcome 1	3	3	3	2	1						1		3	3	1
Outcome 2	3	3	3	2	1						1	1	3	3	1
Outcome 3	3	2	3	2	1							1	3	3	1
Outcome 4	3	2	2	2	1						1	1	3	3	1
Course Average	3	3	3	2	1						1	1	3	3	1

Course Unitization Plan – Theory

Unit	Unit Name	Required	CLOs	References
No.		Contact	Addressed	Used
		Hours		
Unit I	Introduction to DBMS and Relational model	8		
	File Processing System, Advantages of DBMS over File Processing System, Database System Applications.	1	1	1,3
	MS Architecture: The three-schema architecture Data Independence: Logical and Physical.	2	1	1,3
	Data Models: Hierarchical, network and relational models.	1	1	1,3
	Introduction to relational model, concepts of domain, attribute, tuple, relation, importance of null values.	2	1	1,3
	Database constraints (Domain, Key constraints, integrity constraints) and their importance.	2	1	1,3
Unit II	Query processing	10		
	Relational Algebra.	2	2	1,3
	Relational Calculus.	1	2	1,3
	Introduction to SQL: Database Objects- DDL Schema definitions.	1	2	1,3
	DML- Insert, select, update, delete.	1	2	1,3
	Views, exercise on SQL queries.	1	2	1,3
	Transaction support in SQL.	1	2	1,3
	Aggregate Functions, Null Values, Views.	1	2	1,3
	Complex Integrity Constraints in SQL.	1	2	1,3
	Assertions, Triggers	1	2	1,3
Unit III	Conceptual model and database design	9		
	Entity Relationship model Entity types, Entity Sets, Attributes, and Keys Relationships, Relationship types and constraints, Weak Entity types.	3	2	1,2
	Enhanced ER (EER) Modeling: Super/Sub Classes Specialization and Generalization. Constraints and characteristics of Specialization and Generalization.	2	2	1,2
	Example EER Schema.	1	2	
	Basics of Normalization, Normal Forms: First Normal Form (1NF), Second Normal Form (2NF), Third Normal Form (3NF)	2	2	1,2
	BCNF, 4NF	1	2	1,2

Unit Transaction Processing, Concurrency Control	10		
IV and Recovery	10		
Introduction of transaction processing	,		
ages and	2	3	1,3
disadvantages of transaction processing system.			
Serializability and Recoverability of transaction.	2	3	1,3
Concurrency Control Lock based Protocols.	2	3	1,3
Timestamp Based Protocols – Validation based	2	3	1,3
Protocols - Multiple Granularity Locking.	2	5	1,5
Recovery techniques.	2	3	1,3
Unit V Overview of Storage and Indexing	8		
Data on External Storage, File Organization and			
Indexing - Clustered Indexes, Primary and	2	4	1,3
Secondary Indexes.			
Indexed Sequential Access Methods (ISAM) B+	3	4	1,3
Trees: Tree Structure, Search, Insert, Delete.	5	+	1,5
Hash Based Indexing: Static Hashing,			
Extendible hashing, Linear Hashing, Extendible	3	4	1,3
vs. Linear Hashing.			
Total		45	

Course Unitization Plan - Lab

Exp No.	Experiment Name	Required Contact Hours	CLOs Addressed	Reference s Used
1.	Implementation of data storage and indexing methods using files.	4	4	1,2,3
2.	DML queries on a single table.	2	2	1,4
3.	Queries on Joining tables and Aggregate Functions.	4	2	1,3
4.	Nested queries, Queries on creation of views, indexes, sequences and access privileges.	4	2	1,3
5.	Triggers, Assertions.	4	2	1,3
6.	SQL Transactions.	4	3	1,3
7.	PL/SQL, Stored Procedures.	4	4	4
8.	Design and Develop Applications.	4	1,2	1,3
	Total contact hours		30	

Recommended Resources

- 1. Elmasri, R., Navathe, S. B. (2016). Fundamentals of Database Systems. India: Pearson India.
- 2. Ramakrishnan, R., & Gehrke, J. (2002). Database management systems. McGraw-Hill, Inc.
- 3. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2011). Database system concepts. 6th Edition, McGraw Hill, 2011.

Other Resources

4. Garcia-Molina, H., Ullman, J. D., & Widom, J. (2000). Database system implementation (Vol. 672). Upper Saddle River: Prentice Hall.

5. Date. C. J. (2003). An Introduction to Database Systems (8 ed.). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Learning Assessment (Theory)

Dloop	m'a Loval of	Continuo	us Learning	g Assessmer	End Semester	
Bloom's Level of Cognitive Task		CLA-1 (5%)	Mid-1 (20%)	CLA-2 (5%)	CLA-3 (5%)	Exam (35%)
Level 1	Remember					
Level I	Understand					
Level 2	Apply	100%	100%	100%	100%	100%
Level 2	Analyze	10070	100%	100%	100%	100%
Level 3	Evaluate					
Level 5	Create					
Total		100%	100%	100%	100%	100%

Learning Assessment (Lab)

Bloom's	s Level of Cognitive Task	Lab Performance (15%)	End Semester Exam (15%)
Level 1	Remember		
Level I	Understand		
Level 2	Apply	100%	100%
Level 2	Analyze	100%	
Level 3	Evaluate		
Level 5	Create		
	Total	100%	100%

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Web Technology

Course Code	CSE 210	Course Category	Core Course (CC)	L-T-P-C	3	0	1	4
Pre-Requisite		Co-Requisite		Progressive				
Course(s)		Course(s)		Course(s)				
Course	CSE	Professional /						
Offering		Licensing						
Department		Standards						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To familiarize the concepts of HTML and CSS.

Objective 2: To gain knowledge on Javascript for creating Dynamic Websites.

Objective 3: To gain knowledge about the ReactJS.

Objective 4: To comprehend server-side programming using PHP and the basics web services.

Objective 5: To make the students understand the Web hosting services.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom' s Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Describe internet and world wide web	2	70%	65%
Outcome 2	Implement web pages using HTML, CSS and JavaScript	3	70%	65%
Outcome 3	Design Front-end Applications using ReactJS Framework Components.	4	70%	65%
Outcome 4	Create Web Services, server-side programming using PHP and the methods to access DBMS.	4	70%	65%
Outcome 5	Design backend programming by using MongoDB, Spring boot Framework- ORM and Hibernate-REST API	5	70%	65%

Course Articulation Matrix (CLO) to (PLO)

					Prog	gram]	Learn	ing O	utcon	nes (P	LO)				
CLOs	EngineeringKnowledge	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S o c i e t y a n d M u l t i c u l t u l t u r a l S k i l s	E n v i r o n m e n t a n d S u s t a i n d S u s t a i n t a p i i r o n m e n t a y	M o r a l, a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m W o r k S k i l l s	C o m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a n c e	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f e c t e a n g L e a r n g	P S O 1	P S O 2	P S O 3
Outcome 1	23	2	2	2	2							1	1	1	1
Outcome 2		3	3	2	3							1	1	2	1
Outcome 3	3	3	3	2	3							1	1	1	2 2
Outcome 4	3	2	2	2	3							1	22	23	
Outcome 5 Course Average	3	2 3	2 3	2 2	3							1 1	2	3 2	3 2

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	Andhra Pradesh References Used
UNIT I	Introduction to WWW and Web development using HTML	10		
	Introduction to world wide web	1	1	3
	Introduction to HTML5	1	1	3
	Basic tags in HTML5 for text styling-Tags for linking images,	1	1	3
	videos and audio on a Web page.			
	Special characters and line breaks in XHTML	1	1	3
	Various lists (Ordered and Unordered lists)	1	1	3
	Tables and Forms in HTML	1	1	3
	Introduction to CSS	1	1	3
	CSS for background	1	1	3
	Manipulation of texts, fonts, borders etc. using CSS	1	1	3
	Padding lists, positioning elements using CSS	1	1	3
UNIT II	JavaScript	8		
	Introduction to JavaScript	1	2	1, 2
	JavaScript Datatypes, Operators and Expressions	1	2	1
	String Manipulation	0.5	2	1, 2
	Conditional Statements and loops	0.5	2	1, 2
	Arrays and Objects in JS	1	2	1
	Functions in JS, modules in JS	1	2	1
	Recursion in JS	1	2	1
	Constructors in JavaScript	1	2	1, 2
	Pattern matching using Regular expressions in JavaScript	1	2	1,2
UNIT III	jQuery and ReactJS	10		
	Introduction to ReactJS& Setting up React Environment	1	3	1
	React DOM	1	3	1, 2
	Built-in components	1	3	1, 2
	User Defined Components	0.5	3	1, 2
	Internal component state(setState()).	0.5	3	1, 2
	ReactJS Lists	1	3	1, 2
	ReactJS forms and Keys	1	3	1
	React Events	1	3	1,2
	ES6 object Initializer	1	3	1
	Lifecycle methods in ReactJS	1	3	1
	Fetching data from API	1	3	1
UNIT IV	Server-side Programming -PHP	9	_	
	Introduction to Server-side scripting, Features of PHP.	1	4	1
	Datatypes, Operations and expressions.	1	4	1
	Control statements and arrays in PHP.	1	4	1
	Functions and Pattern matching in PHP	1	4	1
	Cookies and Sessions in PHP	1	4	1
	Filters in PHP	1	4	1

	Object Oriented Programming using PHP	1	4	1, 2
	Introduction to MySQL, features of MySQL	1	4	1
	MySQL and PHP Queries.	1	4	1,2
UNIT V	MongoDB	8		
	Introduction to NoSQL and Features of MongoDB	1	5	1, 2
	Operations on MongoDB databases	1	5	1
	Web hosting services	1	5	1
	Introduction to Node.js	1	5	1
	MVC Architecture	1	5	1
	Introduction to web services, REST and SOAP	1	5	1
	Backend Development Using Springboot Framework-	1	5	1
	ORM			
	Hibernate-REST APIs	1	5	1
Total Cont	tact Hours	Theory: 4	5	

Course Utilization Plan - Lab

Experiment No.	Experiment Name	Required Contact Hours	CLOs Addressed	References Used
1	 Familiarize all the basic HTML tags for Heading styles Ordered and unordered lists Image Tables Forms Hyperlinks 	2	1	3
2	 Practice CSS for web page development The CSS element Selector CSS backgrounds and borders CSS fonts CSS effects, etc. 	2	1	3
3	Create a static personal web page using hyperlinks, tables, images, etc.	2	1	3
4	 Practice JavaScript coding: Find the sum of all elements/numbers of a given array Reverse a given string Generate the first N prime numbers. Create an HTML page to change the background color for every click of a button using Java script. Read the age of a person through a textbox and display his age group (Child/Teenage/Young/Senior citizen) Create a simple calculator with HTML and JavaScript functions. Read the inputs through text boxes and keep four different buttons to perform the operations such as add, div, sub, mul, etc. Develop a webpage with HTML and JavaScript to read name and marks of five subjects obtained for that particular student using forms. Further, it should compute the Grade and output the user. 	2	2	1,2
5	 Implement the following using HTML, CSS and JavaScript Create a registration form (Name, Age, Email ID, PIN code, Password, etc.) using HTML, CSS and perform the client validation of the details using JavaScript. The constraints on the user inputs are given below: Name should contain alphabets or spaces. No other characters are allowed. Age should be an integer between 18 and 60. The email ID should be valid. The PIN code should contain 6 digits (spaces or any other characters are not allowed) 	2	2	1,2

			Company of the Party of the Par	Andhra Pradesh
	 Password should have a minimum length of 8 characters, at least one lower case letter and one upper case letter must be there. In addition, at least one special character and one digit must be present. 			
6	Create an interactive web user interface using ReactJS (Example: A simple version of a Social media application, messaging application, or E-commerce application).	4	3	1
7	 Practice Server-side scripting using PHP. Write a PHP function that checks whether a string is all lowercase or not. Write a PHP script that checks whether a given string <i>S1</i> presents another string <i>S2</i>. Write a PHP script to remove non-numeric characters from the given string (Retain digits, comma and dot) Write a PHP script to remove all characters from a string except a-z A-Z 0-9 or " " Calculate the difference between two dates using object-oriented concept in PHP Create a Calculator class in PHP with required data and functions in such a way that it will accept two values as arguments, then add them, subtract them, multiply them together, or divide them on request. 	2	4	1,2
8	Database connectivity using PHP, Operations on MySQL database using a structured query language (SQL) and PHP.	2	4	1,2
9	Connect MySQL with PHP. Create a simple webpage to store and retrieve details from a database. Example: A web application to handle billing process at super market. (Project Work).	2	4	1,2
10-14	Project:Work on a full-stack project using HTML,CSS, Javascript,React JS,PHP withDatabase(MySQL/MongoDB).	10	5	1,2
Total Conta	Let Hours	Practical: 3	30	

Recommended Resources

- 1. Robin Nixon. (2021). Learning PHP, MySQL & JavaScript: A Step-by-Step Guide to Creating Dynamic Websites, 6th ed. O'Reilly Publication.
- 2. RobinWieruch. The Road to React. Zaccheus Entertainment
- 3. Robert W. Sebesta. (2020). Programming World Wide Web, 8th ed. Pearson Publishers Other Resources
- 4. Bruno Joseph D'mello, Mithun Satheesh, and Jason Krol. (2017). Web Development with MongoDB and Node, 3rd ed. Packt Publishing Limited

		Contin	uous Lear (35	ning Asse (%)	ssments	End Semester Exam (35%)
Bloom's Level of Cognitive Task		CLA-1 (5%)	Mid-1 (20%)	CLA-2 (5%)	CLA-3 (5%)	
Level 1	Remember Understand	50%	40%	40%	20%	30%
Level 2	Apply Analyse	50%	60%	40%	40%	70%
Level 3 Evaluate Create		_	-	-	40%	-
	Total	100%	100%	100%	100%	100%

Learning Assessment - Theory

		Continuous Learning Assessments (15%)		End Semester Exam (15%)
Bloom's Lev	el of Cognitive Task	Lab Record (5%)	Lab Performance (10%)	
Level 1	Remember Understand	20%	20%	40%
L	Apply	400/	400/	2007
Level 2	Analyse	40%	40%	20%
Level 3	Evaluate	40%	40%	40%
	Create	+070	+070	+0 /0
Total		100%	100%	100%

Learning Assessment - Lab

SEMESTER V

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	CSE 301	Course Category	Core Course (CC)	L-T-P-C	3	0	1	4
Pre-Requisite		Co-Requisite		Progressive				
Course(s)		Course(s)		Course(s)				
Course		Professional /						
Offering	CSE	Licensing						
Department		Standards						

Computer Networks

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Understand the computer networking fundamentals with data communication system, TCP/IP and OSI reference mode.

Objective 2: Analyse the requirements for a given organizational structure and selection of appropriate network architecture and topology.

Objective 3: Specify and identify working limitation in existing protocols of networking layers and try to formulate new and better protocols.

Objective 4: Gain knowledge of services and design issues of Transport layer. Also compare and contrast TCP and UDP protocol.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Describe computer networking fundamentals based on data communication system, TCP/IP and OSI reference model	2	70 %	65%
Outcome 2	Demonstrate error control and flow control techniques at data link layer	3	70 %	65%
Outcome 3	Select the routing protocols for wired and wireless networks	3	70 %	65%
Outcome 4	Implement ECN congestion and flow control transport layer protocols	3	70 %	65%
Outcome 5	Compare and Contrast application layer protocols -FTP, HTTP, SMTP	4	70 %	65%

Course Outcomes / Course Learning Outcomes (CLOs)

Course Articulation Matrix (CLO) to (PLO)

					Prog	ram I	Learn	ing (Jutco	mes (PLO))			
CLOs	En gin eer ing Kn ow led ge	Pr obl em An aly sis	De sig n an d De vel op me nt	An aly sis , De sig n an d Re sea rch	M od ern To ol an d IC T Us ag e	So cie ty an d M ult icu ltu ral Sk ills	En vir on me nt an d Su sta ina bil ity	M ora l, an d Et hic al A wa ren ess	In div idu al an d Te am wo rk Sk ills	Co m mu nic ati on Sk ills	Pr oje ct M an ag em ent an d Fi na nc e	Sel f- Di rec ted an d Lif elo ng Le arn ing	PS O 1	PS O 2	PS O 3
Outcome 1	2	3	3	3	2								3	2	
Outcome 2	2	2	3	3	2								2	2	
Outcome 3	2	3	3	2	2								2	2	
Outcome 4	3	3	3	3	2								2	3	
Outcome 5	2	3	3	3	2								2	2	
Course Average	2	3	3	3	2								2	2	

Course Unitization Plan - Theory

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
Unit 1	Introduction	9		
	Basic Computer Network concepts, Protocol, Layering Scenario.	1	1	1,2
	Layer Architecture: OSI Model, TCP/IP model.	1	1	1
	Internet history standards and administration; Comparison of the OSI and TCP/IP reference model.	1	1	1,2
	Guided transmission media, wireless transmission media.	1	1	1
	Different LAN topologies: BUS, RING and STAR topology.	1	1	1
	Data Link layer design issues: Error detection techniques.	1	1	1
	Error Correction Techniques, Flow control.	1	1	1,2
	Sliding Window protocols. Go back N and selective Repeat protocols.	1	1	1,2

	Difference between single bit sliding window and n-bit sliding window protocols.	1	1	1,2
Unit	and n-oit shufing window protocols.			
2	Medium Access Control	9		
2	Static and Dynamic channel Allocations.	1	2	1,2
	Shared channel Access: Pure ALOHA and			
	slotted ALOHA.	1	2	1,2
	Persistent CSMA protocols: 1,P and Non-			
	persistent CSMA protocols.	1	2	1,2
	CSMA with collision detection. Comparison of			
	different CSMA protocols.	1	2	1,2
	Collision free protocols: Bit-map protocol,		•	
	Token Ring and Binary Count down protocols.	1	2	1,2
	Limited Contention protocols: Adaptive tree			
	walk protocol.	1	2	1,2
	Shared medium for wireless networks:			
	CSMA/CA or MACA.	1	2	1,2
	Interconnecting LANs: HUBS, Repeaters and			
	Switches and bridges.	1	2	1,2
	Spanning tree algorithm for bridges.	1	2	1,2
Unit			2	1,2
3	Network Layer	9		
	Overview: Connection oriented and connection			
	less services.	1	3	1,2
	Comparison of packet switched, and circuit			
	switched networks.	1	3	1,2
	Routing: proactive routing and reactive routing			
	protocols, static and dynamic routing	1	3	1,2
	protocols.	_	-	- ,
	Dijkstra Algorithm, Distance vector routing		•	
	and Link state routing protocols.	1	3	1,2
	Routing in wireless networks: AODV and			
	DSR routing protocols.	1	3	1,2
	Overview of IP header and IP addressing.	1	3	1,2
	Classful IP addressing: Class A, B,C,D and E.	1	3	1,2
t	Limitations of classful Addressing,	1	_	,
	Introduction to Subnet.	1	3	1,2
<u>+</u>	Overview of Congestion: Warning Bit, Choke			
	packets, Load Shedding, RED (Random Early	1	3	1,2
	Detection)			, ,
Unit	,	7		
4	Internetworking and Transport layer	7		
	IP Encapsulation and Tunnelling.	1	4	1
	IP packet fragmentation, ICMP, ARP.	1	4	1
	ICMP, DHCP, Introduction to Transport layer.	1	4	1
	Different end-to-end transport layer protocols:			
	TCP and UDP.	1	4	1
1				
	Brief explanation of TCP protocol.	1	4	1

	Packet formats for TCP and UDP protocol.	1	4	1
Unit 5	Transport and Application protocols	11		
	TCP Connection Management Modelling.	1	5	1
	TCP Sliding Window.	1	5	1
	TCP congestion control.	1	5	1
	Introduction to application layer paradigms.	1	5	1
	Client Server model.	1	5	1
	Introduction and overview of HTTP protocol.	1	5	1
	Overview of FTP protocol.	1	5	1
	Operation of Electronic Mail.	1	5	1
	Introduction to peer-to-peer communication models.	1	5	1
	Introduction and overview of TELNET.	1	5	1
	Importance of Security in computer Networks.	1	5	1
	Total Contact Hours		45	

Course Unitization Plan - Lab

Exp No.	Experiment Name	Required Contact Hours	CLOs Addressed	References Used
	Lab Experiment 1: Using Wireshark, for sniffing network traffic in real-time and analyse the packet contentstraffic analysis.	2	3	2
	Lab Experiment 2: Simulate error detection technique using CRC Algorithm.	2	3	2
	Lab Experiment 3: Write a program to implement error correction technique using Hamming code.	2	3	2
	Lab Experiment 4: Write a program to implement 1-bit Stop and Wait Protocol at data link layer.	2	3	2
	Lab Experiment 5: Simulate N-bit Sliding Window protocol, at data link layer.	2	3	2
	Lab Experiment 6: Write a program to implement Dijkstra Shortest path routing protocol	2	3	2
	Lab Experiment 7: Write a program to implement Distance Vector Routing.	2	3	2
	Lab Experiment 8: Demonstrate TCP Client Server paradigm through simulation	2	3	2
	Lab Experiment 9: Demonstrate UDP Client Server paradigm through simulation.	2	3	2
	Lab Experiment 10: Write a program to implement echo command in client server socket programming.	2	3	2
	Lab Experiment 11: Write a program to simulate Trace-route command.	2	3	2

Lab Experiment 12: Demonstrate the implementation of Ping command	2	3	2
Lab Experiment 13: Write a code to display the class of IP address, network mask and generate the subnet IP address based on the subnet bits entered from the keyboard	2	3	2
Lab Experiment 14: Write a code to implement sliding window protocol at the transport layer	2	3	2
Lab Experiment 15: Simulate transfer file operation using TCP	2	3	2
Total Contact Hours		30	

Recommended Resources

- 1. Tanenbaum, A. S. (2011). Computer Networks, 5th Edition, Pearson Education.
- 2. Forouzan, B. A. (2013). Data Communications and Networking, 5th Edition TMH.

Other Resources

- 1. Kurose, J. K., & Ross, K. W. (2017). Computer Networking: A Top-Down Approach Featuring the Internet, 7th Edition, Pearson Education.
- 2. Shay, W. A. (2003). Understanding communications and Networks, 3rd Edition, Cengage Learning

Learning Assessment (Theory)

Dloor	n's Level of	Continuou	ıs Learning	nts (30%)	End Semester		
Cognitive Task		CLA-1 (10%)	Mid-1 (10%)	CLA-2 (5%)	CLA-3 (5%)	Exam (30%)	
Lovel 1	Remember	70%	60%	30%	30%	60%	
Level 1	Understand	70%	00%	5070	3070	00%	
Level 2	Apply	30%	40%	70%	70%	40%	
Level 2	Analyse	30%	4070	7070	70%	40%	
Level 3	Evaluate						
Level 5	Create						
	Total	100%	100%	100%	100%	100%	

Learning Assessment (Lab)

Diago	m's Level of	Continuous L	earning Assessments (20%)	End Semester Exam (20%)
	nitive Task	Lab Record (5%)	Lab Performance (15%)	
Level 1	Remember	50%	50%	50%
Level I	Understand	- 30%	30%	
Level 2	Apply	50%	50%	50%
Level 2	Analyse	30%	5070	
Laval 2	Evaluate			
Level 3	Create			
	Total	100%	100%	100%

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	CSE 302	Course Category	Core Course (C)	L-T-P-C	3	0	1	4
Pre-Requisite	CSE 101,	Co-Requisite		Progressive	CSE 326		6	
Course(s)	CSE 235	Course(s)		Course(s)			0	
Course Offering		Professional /		IEEE				
Department	CSE	Licensing						
		Standards						

Operating System

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To familiarize the main components of an OS & their functions

Objective 2: To study the process management and scheduling

Objective 3: To attain knowledge on various issues in Inter Process Communication (IPC) and the role of OS in IPC.

Objective 4: To familiarize the concepts and implementation Memory management policies and virtual memory.

Objective 5: To gain knowledge on the working of an OS as a resource manager, file system manager, process manager, memory manager and I/O manager and methods used to implement the different parts of OS.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Discuss the structure and functions of operating systems	2	70%	70%
Outcome 2	Implement shell script for basic programming skills	3	70%	70%
Outcome 3	Analyse process states and implement process scheduling algorithms.	3	70%	70%
Outcome 4	Apply process synchronization techniques.	3	70%	65%
Outcome 5	Implement memory management techniques.	3	70%	65%
Outcome 6	Demonstrate input, output and file management functions of operating system.	3	70%	65%

Course Outcomes / Course Learning Outcomes (CLOs)

					Prog	gram I	earnir	ng Ou	tcome	s (PLO)				
CL Os	Engi neeri ng Kno wled ge	Pro ble m An aly sis	Desig n and Devel opme nt	Ana lysi s, Des ign and Res earc h	Mo der n To ol and IC T Us age	Socie ty and Multi cultur al Skills	Envir onme nt and Sustai nabili ty	Mor al, and Ethi cal Awa rene ss	Indi vidu al and Tea mw ork Skill s	Comm unicati on Skills	Proje ct Mana geme nt and Finan ce	Self - Dir ecte d and Lif e Lon g Lea rnin g	P S O 1	P S O 2	P S O 3
Out co me 1	3	2	1	1	2							2	2	2	2
Out co me 2	3	2	1	1	2							2	2	2	2
Out co me 3	2	3	3	3	2							1	3	3	3
Out co me 4	2	3	3	3	2							1	3	3	3
Out co me 5	2	3	3	3	2							1	3	3	3
Out co me 6	2	3	3	3	2							1	3	3	3
Co urs e Ave rag e	2	3	3	3	2							1	3	3	3

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

Course Unitization Plan

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
UNIT 1	Introduction	14		
	Operating system overview-objectives and functions	1	1	1,2
	Evolution of Operating System	1	1	1,2
	Computer System Organization	1	1	1,2
	Operating System Structure and Operations	1	1	1,2
	System Programs	1	1	1,2
	Generation and System Boot	1	1	1,2
	Lab Experiment: Shell Programming exercises	4	1	5
	Lab Experiment: Implementing Linux system commands using system calls.	4	1	6
UNIT 2	Process Management	13		
	Process Concepts	1	3	1,2
	Various types of scheduling	1	3	1,2
	Operations on Processes	1	3	1,2
	Inter process Communication	2	3	1,2
	CPU Scheduling Algorithms	3	3	1,2
	OS – examples	1	3	1,2
	Lab Experiment: CPU Scheduling Algorithms.	4	3	1
UNIT 3	Process Synchronization and Deadlocks	17		
	Threads- Overview.	1	4	1,3
	Multithreading Models.	1	4	1,3
	Process Synchronization: Critical section problem and mutual exclusion.	1	4	1,3
	Mutex Locks.	1	4	1,3
	Semaphores.	1	4	1,3
	Monitors	1	4	1,3
	Deadlocks	2	4	1,3
	OS examples.	1	4	1,3
	Lab Experiment: Implement producer, consumer problem using semaphores. Computing page faults for	4	4	1
112.000	various page replacement algorithms. Lab Experiment: Implement deadlock avoidance and detections algorithms.	4	4	1
UNIT 4	Storage Management	18		
	Main Memory Management.	1	5	1,2
	Contiguous Memory Allocation.	1	5	1,2

	Segmentation	1	5	1,2
	Virtual Memory	1	5	1,2
	Paging	1	5	1,2
	Demand Paging.	1	5	1,2
	Page Replacement Algorithms.	1	5	1,2
	Frame Allocation Techniques	1	5	1,2
	Thrashing	1	5	1,2
	OS examples.	1	5	1,3
	Lab Experiment: Computing page faults for various page replacement algorithms.	4	5	1
	Lab Experiment: Simulation of Demand Paging System.	4	5	1
UNIT 5	I/O Systems and File Management	13		
	Mass Storage Structure- Overview.	1	6	1,3
	Disk Scheduling and Management.	1	6	1,3
	File System Storage.	1	6	1,3
	File Concepts.	1	6	1,3
	Directory and Disk Structure.	1	6	1,3
	Sharing and Protection.	1	6	1,3
	File System Implementation.	1	6	1,3
	File System Structure, Directory Structure.	1	6	1,3
	Allocation Methods.	1	6	1,3
	Free Space Management.	1	6	1,3
	OS examples.	1	6	1,3
	Lab Experiment: Project Development.	2	6	Internet resources
	Total Contact Hours- Theory		45	-
	Total Contact Hours- Lab		30	

Recommended Resources

- 1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", 9th Edition, John Wiley and Sons Inc.
- 2. Operating System, Harvey M. Dietel, Paul J. Deitel and David R. Choffnes, Pearson Publications, Third Edition
- 3. William Stallings, "Operating Systems Internals and Design Principles", 9th Edition, Pearson publications.

Other Resources

- 4. Andrew S. Tanenbaum, "Modern Operating Systems", Fourth Edition, Pearson publications
- 5. Mastering Unix Shell scripting, Randal K. Michael, Wiley Publications, Second Edition
- 6. Linux system programming, Robert Love, O'Reily Publications, First Edition, 2007

Learning Assessment

			Contin	uous L	earnin	g Asses	sments	(50%)		End	
Bloom's Level of Cognitive Task		CLA-1 (10%)		Mid-1 (15%)		CLA-2 (10%)		Mid-2 (15%)		Semester Exam (50%)	
			Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
	Remembe										
Leve	r	50%	40%	40%	40%	50%	30%	40%	40%	40%	40%
11	Understa	30%	40%	40%	4070	3070	30%	40%	40%	40%	4070
	nd										
Leve	Apply	50%	60%	60%	60%	50%	70%	60%	60%	60%	60%
12	Analyse	30%	00%	00%	00%	30%	/0%	00%	00%	00%	00%
Leve	Evaluate										
13	Create										
	Total		100	100	100	100	100	100	100	100	100
	TUTAL	%	%	%	%	%	%	%	%	%	%

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Machine Learning

Course Code	CSE 303	Course Category	Core Course (CC)	L-T-P-C	3	0	1	4
Pre- Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** Introduce Machine Learning and various tasks involved in the pipeline of machine learning application development.
- **Objective 2:** Understand a wide variety of regression, classification and clustering algorithms.
- **Objective 3:** Apply the algorithms to a real-world problem, optimize the models learned and report on the expected accuracy that can be achieved by applying the models.
- **Objective 4:** Learn the rapid advances in Machine Learning and be able to understand the research articles.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom' s Level	Expected Proficienc y Percentage	Expected Attainment Percentage
Outcome 1	Demonstrate the phases of machine learning application development.	2	75%	75%
Outcome 2	Describe the learning algorithms.	2	75%	70%
Outcome 3	Explain the techniques to deal with data and its dimension.	2	70%	65%
Outcome 4	Develop speech recognition, object recognition and classification models using machine learning algorithms	4	70%	65%

					Pro	gram	Learn	ing ()	utcon	nes (P	LO)				
CLOs	E n g i n e e r i n g K n o w l e d g e	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	Prog M o d e r n T o o l a n d I C T U s a g e	gram S o c i e t y a n d M u lt i c u lt u r a 1 S k i l 1 s	E n v i r o n m e n t a n d S u s t a i n d S u s t a i i n y	ing O M o r a l, a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k il l s	C o m u n i c a ti o n S k il l s	P r o j e c t M a n a g e m e n t a n d F i n a r o j e c t M a n a g e m e c t n f o i e c t f M a n o c t f n o c t f n o c c t f o c c f o c c f o c c f o c c c c c c	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f e c t e a n g L e a r n n i n n n n n n n n n n n n n n n n	P S O 1	P S O 2	P S O 3
Outcome 1	3	3	3	_	_	_	_	_	_	_	_	g -	3	2	
Outcome 1 Outcome 2	3	3 3	3	-	- 2	-	-	-				-	3	2	
	3 3	3	3 2						-	-	-		3	3 2	
Outcome 3	3	3	2	-	-	-	-	-	-	-	-	-	3	2	
Outcome 4 Course Average	3 3	3 3	2 3	-	- 2	-	-	-	-	-	-	-	3 3	3 3	

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

Course Unitization Plan- Theory

Unit No.	Unit Name	Required	CLOs	References
		Contact	Addres	Used
		Hours	sed	
UNIT I		12		
	Introduction: Introduction to Machine Learning	1	1	1
	Different types of learning	1	1	1
	Different models and Learning algorithm	1	1	1
	Hypothesis space and inductive bias	1	1	1
	Training, Testing, validation of models	1	3	2
	Evaluation of the model: Train data, Test data	1	3	2
	Evaluation of the model: Cross Validation, Overfitting and Underfitting	1	3	2
	Regression: Introduction	1	2	3
	Linear Regression: Simple	1	2,4	3
	Linear Regression: Multiple	1	2,4	3
	Polynomial regression	1	2,4	3
	Evaluating regression fit	1	2,4	3
UNIT II		13	_,.	
	Decision tree learning: Introduction, Decision tree representation	1	2,4	1
	appropriate problems for decision tree learning, the basic decision tree algorithm	1	2,4	1
	hypothesis space search in decision tree learning, inductive bias in decision tree learning,	1	2,4	1
	issues in decision tree learning	1	2,4	1
	Decision tree learning (ID3) Algorithm and numerical	1	2,4	1
	Instance based Learning: K nearest neighbor, numerical problem	1	2,4	1
	the Curse of Dimensionality, Feature selection	1	2,4	1
	Univariate and Multivariate feature selection approaches	1	2,4	1
	Feature selection techniques	1	2,4	1
	Feature reduction: Principal Component Analysis	1	2,4	1
	Feature reduction: Principal Component Analysis	1	2,4	1
	Feature reduction: Linear Discriminant Analysis	1	2,4	1
	Recommender System: Content based system, Collaborative filtering based	1	2,4	4
UNIT III		4		
	Probability and Bayes Learning: Probability and classification, Bayesian Learning,	1	2	1

	Bayes optimal decisions, Naïve Bayes	1	2,4	1
	Support Vector Machine: Introduction, the Dual formulation,	1	2,4	1
	Maximum margin with noise, nonlinear SVM and Kernel function, solution to dual problem, python exercise on SVM	1	2,4	1
UNIT IV		11		
	Artificial Neural Networks: Introduction, , Biological motivation, ANN representation	1	2,4	2
	appropriate problem for ANN learning, McCulloh-Pitts neuron	1	2,4	2
	Perceptron,Perceptronlearning,implementation of logic gates using perceptron	1	2,4	2
	Problem with perceptron, Gradient descent algorithm	1	2,4	2
	ADALINE and delta rule, implementation of logic gates using ADALINE	1	2,4	2
	Problem with ADALINE, Nonlinear classification using ADALINE: Polynomial discriminant function, MADALINE	1	2,4	2
	multilayer networks and the back propagation algorithm	1	2,4	2
	Radial Basis Function Neural Network	1	2,4	2
	Radial Basis Function Neural Network	1	2,4	2
	Introduction to Computational Learning Theory: Introduction	1	2	1
	sample complexity, finite hypothesis space, VC dimension	1	2	1
UNIT V		5		
	Ensembles: Introduction, Bagging and boosting, Random Forest	1	2,4	3
	Fixed rule fusion techniques, Trained rule fusion techniques	1	2,4	3
	Trained rule fusion techniques	1	2,4	3
	Clustering: Introduction, K-mean clustering	1	2,4	3
	Hierarchical clustering	1	2,4	3
	Total contact hours		45	

Course Utilization Plan- Lab

Exp No.	Experiment Name	Required Contact Hours	CLOs Addressed	References Used
1	Introduction to Python basics	2	4	4
2	Machine Learning packages in Python	2	4	4
3	Implement different types of regression using python	2	4	4
4	Write a program that provides an option to compute different distance measures between two points in the N dimensional feature space. Consider some sample datasets for computing distances among sample points	2	4	4
5	Implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Python ML library classes can be used for this problem.	2	4	4
6	Implement ID3 algorithm to construct a decision tree. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample	2	4	4
7	Given a dataset. Write a program to compute the Covariance, Correlation between a pair of attributes. Extend the program to compute the Covariance Matrix and Correlation Matrix	2	4	4
8	Write a program to implement feature reduction using Principal Component Analysis	2	4	4
9	Write a program to implement the naïve Bayesian classifier for a sample training data set. Compute the accuracy of the classifier, considering few test data sets.	2	4	4
10	Given a dataset for classification task. Write a program to implement Support Vector Machine and estimate its test performance.	2	4	4
11	Write a program to implement perceptron for different learning tasks.	2	4	2

12	Write programs to implement ADALINE and MADALINE for a given learning task.	2	4	2
13	Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate data sets	2	4	2
14	Write a program to implement the K-means clustering algorithm. Select your own dataset to test the program. Demonstrate the nature of output with varying value of K	2	4	4
15	Implementation of hierarchical clustering using python	2	4	5
			30	

Recommended Resources

- 1. Mitchell, T.M. and Tom, M. (1997) Machine Learning. McGraw-Hill, New York.
- Deepa, S. N., & Sivanandam, S. N. (2011). Principles of soft computing. Delhi, India: Wiley India Pvt. Ltd
- 3. Alpaydin, E. (2020). Introduction to machine learning. MIT press.
- 4. Swamynathan, M. (2017). Mastering machine learning with python in six steps: A practical implementation guide to predictive data analytics using python. Manohar Swamynathan.

Other Resources

5. Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: springer.

Dloop	m's Loval of	Continuo	us Learning	nts (30%)	End Semester	
Bloom's Level of Cognitive Task		CLA-1 (5%)	Mid-1 (10%)	CLA-2 (5%)	CLA-3 (10%)	Exam (30%)
Level 1	Remember	- 70%	50%	40%	400/	40%
Level I	Understand	/0%	3070	40%	40%	40%
Level 2	Apply	- 30%	50%	60%	60%	60%
Level 2	Analyze	30%	30%	00%	00%	00%
Level 3	Evaluate					
Level 5	Create					
Total		100%	100%	100%	100%	100%

Learning Assessment (Theory)

Learning Assessment (Lab)

Bloom's l	Level of Cognitive Task	Lab Performance (20%)	End Semester Exam (20%)
Level 1	Remember	20%	30%
Level I	Understand	2070	
Level 2	Apply	80%	70%
Level 2	Analyze	8070	
Level 3	Evaluate		
Level 5	Create		
	Total	100%	100%

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Automata and Compilers Design

Course Code	CSE 304	Course Category	Professional Electives (E)	L-T-P-C	3	0	0	3
Pre-Requisite		Co-Requisite		Progressive				
Course(s)		Course(s)		Course(s)				
Course		Professional /						
Offering	CSE	Licensing						
Department		Standards						

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** To comprehend the formal connection between algorithmic problem solving and the theory of languages and automata and develop them into a mathematical (and less magical) view towards algorithmic design and, in general, computation itself.
- **Objective 2:** To understand different formal language classes and their relationships and learn the decidability and intractability of computational problems.
- **Objective 3:** To clarify the practical view towards the applications of these ideas in the engineering part of computer science.
- **Objective 4:** To provide an understanding of the fundamental principles in language translation and compiler design. Also, create an awareness of the function and complexity of compilers.
- **Objective 5:** To gain knowledge of theory and practice required to design and implement compilers for programming languages. To familiarise some compiler construction tools.

	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Design the finite state machines for modelling and examine their power to recognise the regular languages	4	75%	65%
Outcome 2	Analyse the concept of Context- Free Languages and Top-Down parsers	4	75%	65%
Outcome 3	Construct Bottom-up Parsers and implement YACC programs	3	75%	65%
Outcome 4	nantic analysis and generate the intermediate Code.	4	75%	65%
Outcome 5	Analyse the code optimization techniques and generate the machine code	3	75%	65%

Course Outcomes / Course Learning Outcomes (CLOs)

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

											Ano
me 1											
Ou	2	2	3	3	1				2	2	
tco											
me											
2											
Ou	2	3	2	3	1				3	2	
tco											
me											
3											
Ou	2	3	2	3	1				3	2	
tco											
me											
4		_		_							
Ou	2	3	1	3	1				2	1	
tco											
me											
5	•	-	-		-		 		•	-	
Co	2	3	2	3	1				3	2	
ur											
se											
Av											
er											
ag											
e											

Course Unitization Plan

Unit No.	Unit Name	Required Learning Hours	CLOs Addressed	References Used
Unit	Finite Automata: NFA, DFA and	9		
1	LEX			
1	Introduction to Formal Languages,	1	1	1, 3, 5, 6
1	Chomsky Hierarchy	1	1	1, 5, 5, 0
2	Structure of Compiler	1	1	1, 3, 5, 6
3	Finite Automata – DFA	1	1	1, 3, 5, 6
4	Design of NFA, Conversion of NFA to	1	1	1, 3, 5, 6
+	DFA.	1	1	1, 5, 5, 0
5	Regular expression	1	1	1, 3, 5, 6
6	Conversion of regular expression to	1	1	1, 3, 5, 6
0	NFA	1	1	1, 5, 5, 0
7	Minimization of DFA	1	1	1, 3, 5, 6
8	Applications of Finite Automata to	1	1	1, 3, 5, 6
0	lexical analysis	1	1	1, 3, 5, 0
9	Lex tool	1	1	2, 4
Unit	Context-Free Grammar and Top-	9		
2	down Parsing			
10	Context free grammars	1	2	1, 3, 5, 6
11	Design of Context free grammars	1	2	1, 3, 5, 6

				A
12	derivation, parse trees, ambiguity	1	2	1, 3, 5, 6
13	Applications of CFG to parsing	1	2	1, 3, 5, 6
14	Left Recursion, Left Factorization	1	2	1,2,4
15	Recursive Descent parsing	1	2	2,4
16	Computation of FIRST	1	2	2,4
17	Computation of FOLLOW	1	2	2, 4
18	LL(1) parsing	1	2	2, 4
Unit	Bottom Up Parsers and YACC	9		
3				
19	Bottom up parsing: Handle pruning, Shift reduce parsing	1	3	2, 4
20	LR parsing algorithm	1	3	2, 4
21	Construction of LR(0) items	1	3	2,4
22	SLR	1	3	2,4
23	SLR table construction	1	3	2,4
24	Construction of LR(1) items	1	3	2, 4
25	CLR	1	3	2, 4
26	LALR	1	3	2,4
27	Introduction to YACC	1	3	2,4
Unit	Semantic Analysis and Intermediate	9		
4	Code Generation			
28	Semantic Analysis: Syntax directed translation	1	4	2, 4
29	S-attributed and L-attributed grammars	1	4	2,4
30	Type system: Type expression of Array, Record, product, Pointer and function.	1	4	2, 4
31	Type checking, type conversions, equivalence of type expressions,	1	4	2, 4
32	overloading of functions and operations.	1	4	2, 4
33	Intermediate code generation	1	4	2, 4
34	Three address code for statements	1	4	2, 4
35	Three address code for control flow statements	1	4	2, 4
36	Run time storage management			2, 4
Unit 5	Code Optimization and Code Generation	9		
37	Code Optimization, Principal sources of optimization	1	5	2
38	optimization of basic blocks.	1	5	2
39	Construction of flow graphs	1	5	2
40	Common sub expression elimination, Copy propagation,	1	5	2
41	dead code elimination, constant folding, operator strength reduction	1	5	2
			1	1
42	Data flow analysis of flow graphs	1	5	2

44	A simple code generation algorithm	1	5	2
45	Register allocation and assignment	1	5	2
	Total contact hours	45		

Recommended Resources

- 1. John E Hopcroft, Rajeev Motwani, Jeffrey D.Ullman, 3rd Edition, Pearson Education, (2011). Introduction to Automata Theory Languages and Computation.
- 2. Alfred Aho Monica S Lam, Ravi Sethi, Jeffrey D. Ullman, 2ndEdition, Pearson Education India, 2013. Compilers- Principles Techniques and Tool.

Other Resources

- 1. Jones & Bartlett, (2016). An introduction to Formal Languages and Automata Peter Linz, 6th Edition.
- 2. V. Raghavan, 1stEdition, (2017). Principles of Compiler Design McGrawHillEducation.
- 3. Mishra and Chandrasekharan, 3rd Edition, (2009). Theory of Computer Science Automata Languages and Computation , PHI.
- 4. K. V. N. Sunitha, N. Kalyani, (2010). Formal Languages and Automata Theory. 1st Edition, TMH.

Learning Assessment (Theory)

	n's Level of nitive Task	Inte	External Evaluation (50%)			
		CLA-I (10%)	Mid-I (20%)	CLA-II (10%)	CLA-III (10%)	
Level-1	Remember	40%	40%	40%	40%	40%
	Understand					
Level-2	Apply	60%	60%	60%	60%	60%
	Analyse					
Level-3	Evaluate					
	Create					
	Total	100%	100%	100%	100%	100%

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

COMPUTER ORGANIZATION AND ARCHITECTURE

Course Code	CSE 305	Course Category	Professional Core (C)	L-T-P-C	3	0	1	4
Pre-Requisite	CSE	Co-Requisite		Progressive	C	'CE	322	2
Course(s)	XXX	Course(s)		Course(s)	C	SE	322	2
Course		Professional /						
Offering	CSE	Licensing						
Department		Standards						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Learn basic organization of a typical computing system.

- **Objective 2:** Understand working of a basic datapath and control unit of a processor.
- **Objective 3:** Gain knowledge of how a memory is organized and how it interacts with a processor.
- **Objective 4:** Learn how an Input/Output device can interact/communicate with a processor and memory.
- **Objective 5:** Apply knowledge of 8086 Architecture to program 8086 microprocessor using Simulator.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Explain the basic organization of a typical computing system	3	75%	65%
Outcome 2	Illustrate the working of a basic datapath and control unit of a processor	3	75%	65%
Outcome 3	Demonstrate memory organization and its interaction with a processor	3	75%	65%
Outcome 4	Illustrate the interaction/communication of an Input/Output device with a processor and memory	3	75%	65%
Outcome 5	Program 8086 microprocessor using Simulator.	3	75%	65%

Course Outcomes / Course Learning Outcomes (CLOs)

	Program Learning Outcomes (PLO)														
CL Os	Engi neeri ng Kno wled ge	Pro ble m An aly sis	Desig n and Devel opme nt	Ana lysi s, Des ign and Res earc h	Mo der n To ol and IC T Us age	Socie ty and Multi cultur al Skills	Envir onme nt and Sustai nabili ty	Mor al, and Ethi cal Awa rene ss	Indi vidu al and Tea mw ork Skill s	Comm unicati on Skills	Proje ct Mana geme nt and Finan ce	Self - Dir ecte d and Lif elo ng Lea rnin g	P S O 1	P S O 2	P S O 3
Out co me 1	2	2	1	1	1							0	3	1	1
Out co me 2	2	2	2	2	2							3	2	3	2
Out co me 3	2	2	2	3	2							3	1	3	3
Out co me 4	2	2	2	3	2							3	1	3	3
Out co me 5	2	2	2	2	2							3	3	3	2
Co urs e Ave rag e	2	2	2	2	2							3	2	3	2

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

Course Unitization Plan

Unit No.	Unit Name	Required Learning Hours	CLOs Addressed	References Used
Unit 1	Introduction	9hrs		
	Functional units of the computers	1	1	2
	Bus structures	1	1	2

				A
	Instruction formats, Addressing modes	1	1	2
	Architecture and instruction set of 8086/8088	1	1,2	2,7
	microprocessor			
	Assembly language	2	1,2	2,7
	programming			
	Fixed point and floating-point operations	1	1,2	2
	ALU design	2	1,2	2
Unit 2	Basic Processing Unit	10hrs		
	Execution of a complete instruction	2	2	2
	Hardwired control design	3	2	2
	Micro programmed control design	3	2	2
	Nano programming	1	2	2
	CISC and RISC principles	1	2	1,2
UNIT 3	Pipeline Processing	8	2	
	Basic concepts of Pipeline Processing	1	2	2
	Instruction pipeline	2	2	2
	Arithmetic pipeline	1	2	2
	Handling Data, Control and Structural hazards	2	2	2
	Compiler techniques for improving performance	2	2	2
UNIT 4	Memory System	10		
	Semiconductor Memories - Speed, Size and cost, RAM, ROM	2	3	2
	Cache memories	1	3	2
	Improving cache performance	2	3	2
	Virtual memory	1	3	2
	Memory management requirements	1	3	2
	Associative memories	1	3	2
	Secondary storage devices	2	3	2
UNIT 5	I/O Organization	8		
	Different types of I/O devices and I/O transfer schemes	2	4	2
	Programmed Input/output	1	4	2
	Interrupts	1	4	2
	Direct Memory Access	1	4	2
	Interface circuits	1	4	2
	Standard I/O Interfaces	1	4	2
	I/ O Processors	1	4	3

Course Unitization Plan – Lab

Exp No.	Experiment Name	Required Contact Hours	CLOs Addressed	References Used	
1	Lab Experiment 1: 8086 Programming.	2	1,2	7	
2	Lab Experiment 2: 8086 Programming.	2	1,2	7	
3	Lab Experiment 3: 8086 Programming.	2	1,2	7	
4	Lab Experiment 4: 8086 Programming.	2	1,2	7	
5	Lab Experiment 5: 8086 Programming.	2	1,2	7	
6	Lab Experiment 6: 8086 Programming.	2	1,2	7	
7	Lab Experiment 7: 8086 Programming.	2	1,2	7	
8	Lab Experiment 8: 8086 Programming.	2	1,2	7	
9	Lab Experiment 9: Design of Hardwired control unit for a hypothetical CPU.	2	3	2	
10	Lab Experiment 10: Design of Hardwired control unit for a hypothetical CPU.	2	3	2	
11	Lab Experiment 11: Design of Hardwired control unit for a hypothetical CPU.	2	3	2	
12	Lab Experiment 12: Design of Microprogrammed control unit for a hypothetical CPU	2	3	2	
13	Lab Experiment 13: Design of Microprogrammed control unit for a hypothetical CPU	2	3	2	
14	Lab Experiment 14: Design of Microprogrammed control unit for a hypothetical CPU	2	3	2	
15	Lab Experiment 15: Design of Microprogrammed control unit for a hypothetical CPU	2	3	2	
Total	Contact Hours		30		

- 1. Computer System Architecture Morris Mano, Third edition, Pearson publications.
- 2. Computer Organization Carl Hamacher, Zvonko Vranesic and Safwat Zaky, V Edition, McGraw-Hill publications, Fifth Edition, Oxford University Press.

Other Resources

- 1. Computer Organization and Architecture Designing for Performance, William Stallings, Ninth edition, Pearson publications.
- 2. Structured Computer Organization, Andrew S. Tanenbaum, Sixth Edition, Pearson Education India
- 3. Computer Organization and Design: The Hardware/Software interface, David A. Patterson and John L. Hennessy, Elsevier.
- 4. Computer Architecture and Organization, John P. Hayes, Third Edition, Tata McGraw Hill
- 5. 8086 Programming and Advance Processor Architecture, M.T. Savaliya, First Edition, Wiley India

Bloom's Level of Cognitive Task		Internal Continuous Learning Assessments (50%)						External Evaluation (50%)		
		CLA -I	Theory Mid -I	y (80%) CLA -II	CLA -III	Practical Weekly Evaluatio n	(20%) Interna I Exam	Externa l Theory (70%)	Externa l Lab Exam (30%)	
Level -1	Remember Understan d	40%	40%	40%	40%	50%	20%	40%	20%	
Level -2	Apply Analyse	60%	60%	60%	60%	50%	80%	60%	80%	
Level -3	Evaluate Create									

SEMESTER VI

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	CSE 306	Course Category	Core Course (C)	L-T-P-C	3	0	1	4
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards		IEEE				

Software Engineering and Project Management

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To comprehend software development life cycle.

Objective 2: To gain knowledge of requirement engineering and SRS documents.

Objective 3: To understand software architecture styles.

Objective 4: To learn various software testing techniques and their applicability.

Objective 5: To apply and analyze project management life cycle.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency	Expected Attainment
			Percentage	Percentage
Outcome 1	Describe the principles of	2	75%	70%
	software engineering, life			
	cycle models			
Outcome 2	Analyze the computing	3	75%	70%
	requirements to solve a			
	given problem			
Outcome 3	Demonstrate the importance	3	70%	65%
	of software modeling and			
	modeling languages			
Outcome 4	Illustrate the necessity of	3	75%	70%
	software testing and design			
	test cases for a software			
Outcome 5	Interpret Software	3	75%	70%
	maintenance and state the			
	concepts of project			
	management.			

Course Outcomes / Course Learning Outcomes (CLOs)

					Prog	gram L	earnir	ng Ou	tcome	s (PLO)				
CL Os	Engi neeri ng Kno wled ge	Pro ble m An aly sis	Desig n and Devel opme nt	Ana lysi s, Des ign and Res earc h	Mo der n To ol and IC T Us age	Socie ty and Multi cultur al Skills	Envir onme nt and Sustai nabili ty	Mor al, and Ethi cal Awa rene ss	Indi vidu al and Tea mw ork Skill s	Comm unicati on Skills	Proje ct Mana geme nt and Finan ce	Self - Dir ecte d and Lif e Lon g Lea rnin g	P S O 1	P S O 2	P S O 3
Out co me 1	2	1	2	2	2						2	3	2	3	1
Out co me 2	2	3	2	3	3							3	3	3	2
Out co me 3	2	3	3	2	3							3	3	3	2
Out co me 4	2	3	3	2	3						3	3	3	3	2
Out co me 5	2	3	2	2	3						3	3	3	3	2
Co urs e Ave rag e	2	3	2	2	3						1	3	2	3	2

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

Course Unitization Plan

Unit No.	Unit Name	Required	CLOs	References
		Contact	Addressed	Used
		Hours		
Unit 1	Software Product and Software	7		
	Process	/		
	Software Product and Process	1	1	1
	Characteristics	1	1	1

	Software Process Models	1	1	1
	Perspective and Specialized Process Models	2	1	1
	Introduction to Agility	1	1	1
	Agile process	1	1	1,2
	Software Process customization and			
	improvement	1	1	1
Unit 2	Requirements Analysis and	10		
	Specification	18		
	Software Requirements: Functional	1		1.0
	and Non-Functional	1	2	1,2
	Requirement Sources and Elicitation	1	2	1.0
	Techniques	1	2	1,2
	Software Requirements Document	1	2	1,3
	Requirement Engineering Process:	1	2	
	Feasibility Studies	1	2	1,3
	Requirements elicitation and analysis	1	2	1,2
	requirements validation,	1	2	
	requirements management	1	2	1,2
	Classical analysis: Structured system	1	2	1.2
	Analysis	1	2	1,2
	Petri Nets- Data Dictionary.	1	2	1,3
	Lab Experiment: Develop			
	requirements specification for a	2	2	1,2,3
	given problem			
	Lab Experiment: Develop DFD			
	Model (Level 0, Level 1 DFD and	2	2	1,2,3
	data dictionary) of the sample	2	2	1,2,5
	problem			
	Lab Experiment: To perform the			
	function oriented diagram : DFD and	2	2	1,2,4
	Structured chart			
	Lab Experiment: To perform the			
	user's view analysis : Use case	2	2	1,2,4
	diagram			
	Lab Experiment: To perform the	2		
	user's view analysis : Use case	2	2	1,2,4
	diagram Scenario's			
Unit 3	Software Design	27		1.4
	Design process and Design Concepts	1	3	1,4
	Design Model– Design Heuristic	1	3	2,3
	Architectural Design - Architectural	1	3	1,5
	styles,			,
	Architectural Design, Architectural	2	2	1.0
	Mapping using Data Flow- User	2	3	1,2
	_	2	3	1,2

				A DEC
	Component level Design: Designing Class based components, traditional Components	2	3	1,4
	Lab Experiment: To draw the structural view diagram : Class diagram	2	3	1,4,5
	Lab Experiment: To draw the structural view diagram : Object diagram	2	3	1,4,5
	Lab Experiment: To draw the structural view diagram : Package diagram	2	3	1,4,5
	Lab Experiment: To draw the behavioral view diagram: Sequence diagram	2	3	1,4,5
	Lab Experiment: To draw the behavioral view diagram: Collaboration diagram	2	3	1,4,5
	Lab Experiment: To draw the behavioral view diagram: State-chart diagram	2	3	1,4,5
	Lab Experiment: To draw the behavioral view diagram: Activity diagram	2	3	1,4,5
	Lab Experiment: To draw the implementation view diagram: Component diagram	2	3	1,4,5
	Lab Experiment: To draw the environmental view diagram : Deployment diagram	2	3	1,4,5
Unit 4	Testing and Maintenance	13		
	Software testing fundamentals	1	4	1,2
	Internal and external views of Testing	1	4	1,3,4
	white box testing : Basis path testing-control structure testing	2	4	1,4
	black box testing- Regression Testing	2	4	1,5
	Unit Testing – Integration Testing – Validation Testing	1	4	1,3
	System Testing And Debugging	1	4	1,2
	Software Implementation Techniques: Coding practices- Refactoring	1	4	1,5
	Maintenance and Reengineering- BPR model	1	4	1,3
	Reengineering process model- Reverse and Forward Engineering.	1	4	1,2

	Lab Experiment: To perform various testing using the testing tool unit testing, integration testing	2	4	1,4
Unit 5	Software Maintenance & Software Project Measurement	10		
	Software Configuration Management (SCM)	2	5	2,3
	Software Change Management	2	5	2,5
	Version Control, Change control and Reporting	2	5	1,3
	Re-engineering, Reverse Engineering	1	5	1,4
	Project Management Concepts	1	5	1,5
	Project Scheduling and Tracking	1	5	3
	Software Quality Assurance (SQA)	1	5	1

- 1. Roger S. Pressman, (2018) Software Engineering A Practitioner's Approach, Seventh Edition, Mc Graw-Hill International Edition,.
- 2. Ian Sommerville, (2019) Software Engineering, 9th Edition, Pearson Education Asia, .
- 3. Rajib Mall, (2009) Fundamentals of Software Engineering, Third Edition, PHI Learning Private Limited.
- 4. Pankaj Jalote, (2010) Software Engineering, A Precise Approach, Wiley India,
- 5. Kelkar S.A. (2007), Software Engineering, Prentice Hall of India Pvt Ltd.
- 6. Pankaj Jalote, (2005)" An Integrated Approach to Software Engineering", Narosa Pub.
- 7. Bob Hughes, M. Cotterell, Rajib Mall "Software Project Management", McGraw Hill.

		Contir	nuous L	earning	Assessme	ents (50%)	End Semester		
Bloom's Level of Cognitive Task		Theory (30%)				Practical (20%)			
		CLA-1 (5%)	Mid- 1 (10%)	CLA- 2 (5%)	Mid-2 (10%)	Internal	Th	Prac	
Level	Remember	70%	60%	50%	40%	50%	30%	30%	
1	Understand	/0/0	0070	5070	1070	5070	5070	3070	
Level	Apply	30%	40%	50%	60%	50%	70%	70%	
2	Analyse	30%	40%	30%	00%	30%	70%	/0%	
Level	Evaluate								
3	Create								
	Total	100%	100%	100%	100%	100%	100%	100%	

75%

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	CSE 307	Course Category	Core Course (C)	L-T/D-P/Pr-C	3	0	1	3
Pre-Requisite		Co-Requisite		Progressive				
Course(s)		Course(s)		Course(s)				
Course Offering		Professional /						
Department	CSE	Licensing						
Department		Standards						

Mobile Application Development with Java

Course Objectives

Objective 1: To introduce the concepts of Object Oriented Programming using JAVA programming.

Objective 2: To demonstrate the introduction and characteristics of mobile applications.

Objective 3: To understand the design of user interfaces in mobile devices.

Objective 4: To develop mobile applications and deploy in play store.

At the end of the course the Expected Expected Bloom's learner will be able to Proficiency Attainment Level Percentage Percentage Utilize the Object-Oriented 75% Outcome

Course Learning Outcomes (CLOs)/Course Outcomes (COs)

1	Concepts in solving real word	3,4		
	problems through Java.			
Outcome	Install and configure Android		77%	70%
2	application development	3,4		
	tools.			
Outcome	Design and develop user		75%	70%
3	Interfaces for the Android	3,4		
	platform.			
Outcome	Apply Java programming		72%	70%
4	concepts to Android	3,4		
	application development			

Course Unitization Plan

Unit	Unit Name	Required	CLOs	References
No.		Contact	Addressed	Used
		Hours		
Unit 1	INTRODUCTION TO JAVA	17		
	An Overview of Java - Data types,	2	1	8
	Variables and Arrays, operators,			
	expressions, Control statements			

				Ar
	Classes, Objects, Constructor, Methods, this reference, static keyword, and final	3	1	8
	keyword;.	-		
	String handling, Compiling using command line argument	2	1	8
	Inheritance - Concept, Member access, Abstract Class, Interface, Creating Multilevel hierarchy- super uses, Packages-access specifiers, using final with inheritance	3	1	8
	Polymorphism - Compile time Polymorphism, Method overloading, Constructor overloading	2	1	8
	Run time polymorphism, Method overriding, Dynamic method dispatch	2	1	8
	Lab Experiment 1.Install /configure java development kit (JDK), android studio and android SDK. Configure android development tools (ADT) plug-in and create android virtual device.	1	2	2
	Lab Experiment 2: Declare two classes Student and Teacher. The classes will have the data members and constructors as per your convenience. Write a JAVA program, (i) where the Teacher will enter the marks of the all the students in the database. (ii) Once the marks are entered, the student can view the marks.	1	2	8
	Lab Experiment 3: Define a package named gradepack. The gradepack consists of a class named operations. The operations class consists of the methods to compute the average, minimum, maximum, median and standard deviation. Create a class named GradesStatistics, which reads in n grades (of int between 0 and 100, inclusive) and displays the average, minimum, maximum, median and standard deviation by importing the gradepack package. (Pass the grades information to the methods in the operations class.) Display the floating- point values upto 2 decimal places.	1	1	8
Unit 2	EXCEPTION HANDLING & MULTITHREADING	9		
	Fundamentals of exception handling, Uncaught exceptions, using try and catch, multiple catch blocks	2	1	8
	Exception types - Introduction to Object class, Exception class hierarchy,	2	1	8

				An
	Termination or presumptive models, Built- in exceptions. User defined exceptions			
	in exceptions, User defined exceptions Nested try statements, Throw, Throws, and Finally. Multithreading- Differences between thread-based multitasking and	2	1	8
	process based multitasking			
	Java thread model, Thread life cycle, Creating threads – Thread class,	1	1	8
	Runnable interface, Thread priorities, Synchronizing threads, Inter-thread communication.	1	1	8
	Lab Experiment 4: Create three classes named Student, Teacher, Parents. Student and Teacher class inherits Thread class and Parent class implements Runnable interface. These three classes have run methods with statements. The task of the teacher class of the first assignment has to be synchronized. Similarly, the other two classes should have run methods with few valid statements under synchronized.	1	1	8
UNIT- III	UI Components and Layout, Design User Interface with View	17		
	Control Flow, Directory Structure, Components of a Screen, Fundamental UI Design, Linear Layout, Absolute Layout, Frame Layout, Table Layout, Relative Layout.	3	3	2
	Text View, Edit Text, Button, Image Button, Toggle Button, Radio Button and Radio Group, Checkbox	3	3	2
	Progress Bar, List View, Grid View, Image View, Scroll View, Custom Toast Alert, Time and Date Picker.	3	3	2
	Lab Experiment 5 a. Develop a program to implement linear layout and absolute layout.b. Develop a program to implement frame layout, table layout and relative layout.	2	3	2
	Lab Experiment 6. a Develop a program to implement Text View and Edit Text. b Develop a program to implement Auto Complete Text View. c Develop a program to implement Button, Image Button and Toggle Button.	2	3	2

				And
	Lab Experiment 7.a Develop a program to implement login window using above UI controls. Lab Experiment 7 b.Develop a program to implement Checkbox, Radio Button and Radio Group, Progress Bar. Lab Experiment 7 c Develop a program to implement List View, Grid View, Image View and Scroll View.	2	3	2
	Lab Experiment 8a .Develop a program to implement Date and Time Picker. Lab Experiment 8b.Develop a program to implement Custom Toast Alert.	2	3	2
UNIT- IV	Activity and Multimedia with databases	18		
	Intent, Intent Filter, Activity Lifecycle, Broadcast Lifecycle, Content Provider, Fragments, Service: Features Of service, Android platform service, Defining new service	3	3	1,2
	Service Lifecycle, Permission, example of service Multimedia framework, Play Audio and Video, Text to speech, Sensors,	3	3	1
	Async task, Android System Architecture, Audio Capture, Camera, Bluetooth, Animation, SQLite Database, Defining a Schema, Building Your Initial database	3	3	1
	Creation and connection of the Database, extracting value from cursors, Transactions.	3	3	1
	Lab Experiment 9 a: Develop a program to create an activity. Lab Experiment 9 b: Develop a program to implement new activity using explicit intent and implicit intent. Lab Experiment 9 c: Develop a program to implement content provider Lab Experiment 9 d: Develop a program to implement service.	2	3	1
	Lab Experiment 10 a: Develop a program to implement broadcast receiver. Lab Experiment 10 b: Develop a program to implement sensors. Lab Experiment 10 c: Develop a program to build Camera.	2	3	1

				And
	Lab Experiment 11 a: Develop a program for providing Bluetooth connectivity Lab Experiment 11 b: Develop a program for animation Lab Experiment 11 c: Perform Async task using SQLite.	2	3	1
UNIT- V	Security and Application Deployment	14		
	SMS Messaging : Sending SMS Messages Programmatically , Getting Feedback after Sending a Message	2	4	2
	Sending SMS Messages Using Intent, Receiving SMS Messages, Caveats and Warnings, Sending E-mail.	2	4	2
	Location Based Services: Creating the project, Getting the maps API key, Displaying the map, Displaying the zoom control, Navigating to a specific location, Adding markers	2	4	2
	Getting location, Geocoding and reverse Geocoding. Getting Location data, Monitoring Location, Android Security Model, Declaring and Using Permissions, Using Custom Permission.	2	4	2
	Application Deployment: Creating Small Application, Signing of application, Deploying app on Google Play Store, Publishing Android Applications, Developer Console.	2	4	2
	Lab Experiment 12 a. Create sample application with login module. (Check username and password) On successful login, Change text view "Login Successful" And on login fail, alert user using Toast "Login fail" Lab Experiment 12 b: Create login application where you will have to validate username and password till the username and password is not validated, login button should remain disabled.	2	4	2
	Lab Experiment 13 a: Develop a program to: a) Send SMS b) Receive SMS Lab Experiment 13 b: Develop a program to send and receive e-mail Lab Experiment 13 c: Deploy map based application.	2	4	2

Text Books:

- 1. Bill Phillips, Chris Stewart, Brian Hardy, and Kristin Marsicano, "Android Programming: The Big Nerd"
- 2. Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox),2013
- 3. Ranch Guide, "Big Nerd Ranch LLC", 2nd edition, 2015.
- 4. Valentino Lee, Heather Schneider, and Robbie Schell, "Mobile Applications: Architecture, Design and Development", Prentice Hall, 2004.
- 5. "Professional Android 4 Application Development", Reto Meier, Wiley India, (Wrox),2012
- 6. "Android Application Development for Java Programmers", James C Sheusi, Cengage Learning, 2013
- 7. Dawn Griffiths, David Griffiths, "Head First: Android Development", OReilly2015, ISBN: 9781449362188
- 8. Java The complete reference, 9th edition, Herbert Schildt, McGraw Hill Education (India) Pvt. Ltd.
- 9. http://developer.android.com/develop/index.html
- 10. Jeff McWherter and Scott Gowell, "Professional Mobile Application Development", Wrox, 2012

Reference Books:

- 1. Tomasz Nurkiewicz and Ben Christensen, Reactive Programming with RxJava, O'ReillyMedia, 2016.
- 2. Brian Fling, Mobile Design and Development, O'Reilly Media, Inc., 2009.
- 3. Maximiliano Firtman, Programming the Mobile Web, O'Reilly Media, Inc., 2nd ed.,2013.
- 4. Cristian Crumlish and Erin Malone, Designing Social Interfaces, 2nd ed., O'ReillyMedia, Inc., 2014.
- 5. Suzanne Ginsburg, Designing the iPhone User Experience: A User-Centered Approach toSketching and Prototyping iPhone Apps, Addison-Wesley Professional, 2010

Bloor	n's Level of	Contin	uous Lear (60	End Semester Assessments		
Cognitive Task		CLA-1 (15%)	Mid-1 (15%)	CLA-2 (15%)	CLA-3 (15%)	(40%)
Level 1	Remember					
Level I	Understand					
Level 2	Apply	1000/	1000/	100%	1000/	1000/
Level 2	Analyse	100%	100%	100%	100%	100%
Level 3	Evaluate					
Level 5	Create					
	Total	100%	100%	100%	100%	100%

Semester VIII

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal

Guntur District, Mangalagiri, Andhra Pradesh 522240

Major Project

Course Code	CSE 404	Course Category	RDIP (RD)	L-T-P-C	0	0	12	12
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To widen the understanding of doing research.

Objective 2: To facilitate the ideation of a thought.

Objective 3: To devise and plan ways to execute an idea.

Objective 4: To learn how to avoid plagiarism and publish one's contribution in the research community.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Attainment Percentage	
Outcome 1	Conceptualize an idea	3	75%	70%
Outcome 2	Devise a plan to do the literature survey on the idea	4	75%	70%
Outcome 3	Formulate the mathematical model for the problem.	3	75%	70%
Outcome 4	Assess the relevance and societal impact of the work	5	70%	65%
Outcome 5	Write a technical paper and report the findings.	4	75%	70%

Course Articulation	rticulation Matrix (CLO) to Program Learning Outcomes (PLO) Program Learning Outcomes (PLO)														
			1		Prog	gram l	Learn	ing O	utcon	nes (P	LO)	1	1		
CLOs	EngineeringKnowledge	ProblemAnalysis	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S o c i e t y a n d M u l t i c u l t u l t u l t u r a l S k i l s	E n v i r o n m e n t a n d S u s t a i n a b i i t y	M o r a l , a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k i l l s	C o m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a n c e	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f e c t e a n g L e a r n g L e a r n g L e s o s o s o s o s o s o s o s o s o s	P S O 1	P S O 2	P S O 3
Outcome 1	3				2		1	2	3	2	1	3	2	2	3
Outcome 2	3	2	2	3	3	1	1	3	3	3	2	3	2	1	3
Outcome 3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Outcome 4		2				3	3	3			3	3	2	1	3
Outcome 5	3	1	1	3	3			3	3	3		3	3	3	3
Course Average	3	2	2	3	3	2	2	3	3	3	3	3	3	2	3

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

Course Unitization Plan

Unit No.	Unit Name	Required Contact hours	CLOs Addressed	References Used
	Concention of Idea		Auuresseu	Useu
Unit I	Conception of Idea	60		
	Based on interest conceive an idea	50	1,4	1
	Do a feasibility check of the project	10	1,4	1
Unit 2	Submission of Abstract of the idea	70		
	Literature survey of the related works	50	2	1,2,3,4,5

	Total		360	
	Initiation of the process for a possible publication.	70	5	2,3,4,5
	Execution of the various modules of the project and intermediate report submission.	100	3	1
Unit 4	Conducting Simulations and Publish results	170		
	Creating timeline for execution of various module of the project.	10	3	1,6
	Formulate the mathematical model for the considered problem	50	3	1
Unit 3	Formulate the Mathematical model	60		
	Write an abstract of the proposed idea	20	2	1

- 1. As recommended by Advisor pertaining to student research interest.
- 2. https://ieeexplore.ieee.org/Xplore/home.jsp
- https://www.sciencedirect.com/
 https://www.sciencedirect.com/
 www.springer.com
 <u>https://onlinelibrary.wiley.com/</u>
 Research Methodology

			Continuous Learning Assessments (50%)							External (50%)		
Bloom's Lev	el of Cognitive Task		Internal									
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac	
Level 1	Remember											
	Understand											
Level 2	Apply				70%						30%	
Level 2	Analyse											
Level 3	Evaluate				30%						70%	
Level 5	Create											
Total					100%						100%	

STREAM ELECTIVES

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

			0					
Course Code	CSE 455	Course Category	Stream Electives (SE)	L-T-P-C	3	0	1	4
Pre-Requisite Course(s)	wwwww	Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Artificial Intelligence

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To enhance comprehension of both the theory that underpins and the accomplishments of artificial intelligence.

Objective 2: To introduce the concepts of a Rational Intelligent Agent and the different types of Agents that can be designed to solve problems.

Objective 3: To review the different stages of development of the AI field from human like behaviour to Rational Agents.

Objective 4: To impart basic proficiency in representing difficult real-life problems in a state space representation so as to solve them using AI techniques like searching and game playing.

Objective 5: to develop an awareness of the fundamental problems with knowledge representation, logic, blind and heuristic search, and other subjects like minimum, resolution, etc. that are crucial to AI systems.

Objective 6: To introduce advanced topics of AI such as planning, Bayes networks, natural language processing and Cognitive Computing.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom' s Level	Expected Proficienc y Percentag e	Expected Attainme nt Percentag e
Outcome 1	Identify the Intelligent systems and Approaches.	1	75%	65%
Outcome 2	Discuss the building blocks of AI as presented in terms of intelligent agents.	2	75%	65%
Outcome 3	Formalize the problem as a state space, graph, design heuristics and select amongst search or game-based techniques to solve them.	4	75%	65%
Outcome 4	Develop intelligent algorithms for constraint satisfaction problems and intelligent systems for Game Playing.	5	75%	65%
Outcome 5	Implement application-specific intelligent systems	3	75%	65%
Outcome 6	Represent logic-based techniques to perform inference and planning in given problems.	6	75%	65%

	1														
					Pro	gram]	Learni	ing Ou	tcome	es (Pl	LO)			-	
CLOs	En gi ne eri ng K no wl ed ge	Pr ob le m A na ly si s	De si gn an d De ve lo p m en t	Ana lysi s, Des ign and Res earc h	Mo der n Too 1 and ICT Usa ge	Soc iety and Mul ticu ltur al Skil ls	Env iron nt and Sus tain abil ity	Mo ral, and Ethi cal Aw are nes s	Indi vid ual and Tea mw ork Skil ls	C o m un ic ati on S ki lls	Proj ect Ma nag eme nt and Fin anc e	Self - Dir ecte d and Life Lon g Lea rnin g	P S O 1	P S O 2	P S O 3
Outcome	3	3	3	3	3	1			2		2	2	2	2	2
Outcome 2	3	2	3	2	2	1			2		2	3	2	2	2
Outcome 3	3	3	3	3	2	1			2		2	2	2	2	2
Outcome 4	3	3	3	2	3	1			2		3	3	3	2	3
Outcome 5	3	3	3	3	2	1			2		2	3	2	2	2
Outcome 6	3	3	3	3	2	1			2		2	2	3	3	2
Course Average	3	3	3	3	2	1			2		2	3	2	2	3

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

Course Unitization Plan - Theory

Unit No.	Unit Name	Required Contact Hours	CLOs Addresse d	Reference s Used
Unit 1	Introduction	9		
	What is Intelligence.	1	1	1, 2
	Foundations and History of Artificial Intelligence.	1	1	1, 2
	Applications of Artificial Intelligence.	1	2	1, 2
	Types of Different Intelligent system.	1	2	1, 2
	Intelligent Agents, Structure of Intelligent Agents.	1	1, 2	1, 2
	Introduction to Machine Learning and categorization.	1	1, 2	1, 2
	Introduction to Reinforcement Learning.	1	1, 2	1, 2
	Introduction to Deep Learning.	1	1, 2	1, 2
	Introduction to Agents	1	1	1, 2

Unit 2	Search Mechanisms & Constraint Satisfaction problems.	9		Andhra Prado
	Introduction to Search (Single Agent).	1	1	1, 2
	Introduction to Search (Two Agents).	1	1	1, 2
	Introduction to State space.	1	1	1, 2
	Searching for solutions.	1	2, 3	1, 2
	Uniformed search strategies.	1	3, 4	1, 2
	Informed search strategies.	1	3, 4	1, 2
	Local search algorithms and optimistic problems Adversarial Search.	1	3, 4	1, 2
	Least commitment search.	1	3	1, 2
	Constraint satisfaction problems.	1	2	1, 2
Unit 3	Knowledge Representation and Reasoning	9		
	Propositional Logic and Inference rules.	1	2	1, 2, 3, 4
	Predicate Logic (first order logic).	1	2, 3	1, 2, 3, 4
	Inference in FOL.	1	2, 3	1, 2, 3, 4
	Rule-based system, Logical Reasoning.	1	2, 3	1, 2, 3, 4
	Forward &Backward Chaining.	1	2, 3	1, 2, 3, 4
	Knowledge Resolution.	1	3, 4	1, 2, 3, 4
	AI languages and tools – Lisp.	1	5	1, 2, 3, 4
	AI languages and tools –Prolog.	1	5	1, 2, 3, 4
	AI languages and tools –CLIPS.	1	5	1, 2, 3, 4
Unit 4	Problem Solving and planning	9		
	Formulating problems.	1	1, 2	1, 2, 3, 4
	Problem types	1	2	1, 2, 3, 4
	Solving Problems by Searching.	1	3, 4	1, 2, 3, 4
	Heuristic search techniques.	2	2, 3	1, 2, 3, 4
	Constraint satisfaction problems.	1	3, 4	1, 2, 3, 4
	Plan space, partial order planning, planning algorithms	1	3, 4	1, 2, 3, 4
	Stochastic search methods.	1	4	1, 2, 3, 4
	Tabu search, best first search.	1	4	1, 2, 3, 4
Unit 5	Learning	9		
	Overview of different forms of learning,	1	1	1, 2
	Inductive tree			
	Decision trees, rule- Game playing	1	2, 3	1, 2
	Perfect decision game-based learning.	1	2, 3	1, 2
	Neural networks.	1	3, 4, 5	1, 2
	Reinforcement learning.	1	2, 4, 5	1, 2
	Game playing: Perfect decision game.	1	3, 4	1, 2
	Imperfect decision game.	1	3, 4	1, 2
	Evaluation function.	1	3, 4	1, 2
	Minimax, Alpha-beta pruning.	1	4, 6	1, 2
	Total Theory Contact Hours		45	, ,

Course Unitization Plan - Lab

No.	Lab Experiment	Required	CLOs	Reference
		Contact Hours	Addressed	s Used
1	Artificial Intelligence Problem identification, PEAS description, and Introduction to PROLOG	2	1	1, 2, 3
2	Study of facts, objects, predicates, variables, arithmetic operators, simple input/output, and compound goals in PROLOG	4	2	1, 2
3	Study of string operations in PROLOG. Implement string operations like substring, string position, palindrome, and implement all set operations (Union, intersection, complement).	4	1, 2	1, 2, 4
4	Write a program for Usage of rules in Prolog. Create a family tree program to include following rules 1. M is the mother of P if she is a parent of P and is female 2. F is the father of P if he is a parent of P and is male 3. X is a sibling of Y if they both have the same parent. 4. Then add rules for grand- parents, uncle-aunt, sister and brother.	4	2, 3	1, 2
5	 Write programs for studying Usage of arithmetic operators in Prolog. a) Accept name of the student, roll no, his/her subject name, maximum marks and obtained marks in the subject. (Take marks of atleast 6 subjects). Compute the percentage of a student. Display his result with other information. b) Accept department, designation, name, age, basic salary, house rent allowance (HRA) of an employee. Compute dearness allowance (DA) which is 15% of basic salary. Determine the gross salary (basic salary + HRA + DA) of the employee. Display all information of the employee (Generate Payslip). 	4	4	1, 2, 3
6	Implement a program for recursion and list in PROLOG	4	4, 5	1, 2, 4, 5
7	 Write a program for studying usage of compound object and list in Prolog. a) Write a program to maintain inventory items using a compound object: Accept from user the details of at least 10 objects. Display from user the details of objects entered by user Find and display odd and even numbers from a given input list. 	4	5	3, 4, 5

			100 Million (100 M	17512201257.0777.0701012
8	Write a program to solve the following problems.	4	5, 6	4, 5
	1. Write a prolog program to solve "Water Jug			
	Problem".			
	2. Write a program to implement a monkey banana			
	problem.			
	3. Write a program to implement 8 Queens			
	Problem.			
	4. Write a program to solve traveling salesman			
	problem.			
	5. Write a program to solve water jug problem using			
	LISP.			
	Total Lab Contact Hours		30	

- 1 Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th ed.). Prentice Hall.
- 2 Charniak, E., & McDermott, D. (2002). Introduction to Artificial Intelligence. Pearson Education.
- 3 Nilsson, N. J. (2002). Artificial Intelligence: A New Synthesis. Morgan Kaufmann.
- 4 Pearl, J. (2009). Causality: Models, Reasoning and Inference (2nd ed.). Cambridge University Press.
- 5 Rich, E., Knight, K., & Nair, S. B. (2017). Artificial Intelligence (3rd ed.). McGraw Hill Education.

Learning Assessment (Theory)

Plaar	n's Loval of	Continuo	us Learning	nts (30%)	End Semester	
Bloom's Level of Cognitive Task		CLA-1 (10%)	Mid-1 (10%)	CLA-2 (5%)	CLA-3 (5%)	Exam (30%)
Level 1	Remember	40%	50%	40%	50%	30%
Level I	Understand	40%	50%	4070	30%	3070
Level 2	Apply	40%	40%	40%	30%	50%
Level 2	Analyse	40%	40%	4070	30%	3070
Level 3	Evaluate	20%	10%	20%	20%	20%
Level 5	Create	20%	10%	20%	20%	20%
Total		100%	100%	100%	100%	100%

Learning Assessment (Lab)

Bloom's Level of Cognitive			earning Assessments (20%)	End Semester Exam (20%)
BIOOIII'S L	Task	Lab Record (5%)	(15%)	
Level 1	Remember Understand	10%	50%	30%
Level 2	Apply	50%	30%	50%

	Analyse			
Level 3	Evaluate	40%	20%	20%
Level 5	Create	40%	2070	2070
	Total	100%	100%	100%

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Digital Image Processing

Course Code	CSE 456	Course Category	Stream Elective (SE)	L-T-P-C	3	0	1	4
Pre-Requisite Course(s)	CSE 336	Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards		thWorks Licen MATLAB softw				

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Understand the overview of the field of image processing.

Objective 2: Gain knowledge of the fundamental algorithms and how to implement them.

Objective 3: Prepare to read the current image processing research literature.

Objective 4: Gain experience in applying image processing algorithms to real problems.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom 's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Describe the process of image processing and techniques involved in image processing pipeline.	2	75%	75%
Outcome 2	Identify image enhancement techniques.	2	75%	70%
Outcome 3	Illustrate the causes for image degradation and overview of image restoration techniques.	3	70%	65%
Outcome 4	Apply spatial and frequency domain techniques for image compression.	3	70%	65%
Outcome 5	Demonstrate extraction techniques for image analysis and recognition.	3	75%	70%
Outcome 6	Develop an image processing application using feature extraction and representation	5	65%	60%

Outcome 7	Recognize the rapid advances in Machine	2	70%	65%
	vision.			

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

Course Articulati			(.,	-			ing O							
CLOs	EngineeringKnowledge	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S o c i e t y a n d M u l t i c u l t u l t u l t u l t u l t s	E n v i r o n m e n t a n d S u s t a i n d S u s t a i n t a n t u s t t a y	M o r a l , a n d E t h i c a l , a n d E t h i c a r a n d E t h i c a s s	I n d i v i d u a l a n d T e a m w o r k S k i l l s	C o m u n i c a t i o n S k i l s	P r o j e c t M a n a g e m e n t a n d F i n a n c e	S e l f - D i r e c t e d a n d L i f e L o n g L e a r n i n g	P S O 1	P S O 2	P S O 3
Outcome 1	3	3	3	-	-	-	-	-	-	-	-	-	3	2	
Outcome 2	3	3	3		2	-	-	-	-	-	-	-	3	3	
Outcome 3	3	3	2	-	-	-	-	-	-	-	-	-	3	2	
Outcome 4	3	3	2	-	-	-	-	-	-	-	-	-	3	3	
Outcome 5	3	3	2	-	2	-	-	-	-	-	-	-	3	3	
Outcome 6	2	2	3	3	3	-	-	-	-	-	-	-	2	3	
Outcome 7	3	3	1	-	-	-	-	-	-	-	-	-	3	3	
Course	3	3	2	3	2								3	3	
Average															

Course Unitization Plan

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	Andhra Pradesh References Used
Unit 1	Introduction	9		
	Introduction: What is digital image and DIP? History, Applications of DIP	1	1,7	1
	Key stages of Digital Image processing, Advances in machine vision application domain		1,7	1, 4
	Image sampling and quantization, spatial resolution, intensity resolution	1	1	1
	Relationship between pixels: neighbourhood, adjacency and connectivity, Path, region boundary		1	1
	Connected component labelling, Distance measure: Euclidian, chess board, city block.	1	1	1
	Image acquisition and Pre-processing, Intensity transformations, spatial filtering		2	1
	Image enhancement: Introduction, Point Processing- image negative, log transform, dynamic range compression.	1	2, 6	1
	Power law or gamma Transformation, gamma correction	1	2, 6	1
	Piecewise linear transformation: contrast stretching, threshold, bit-plane slicing		2, 6	1
	Histogram processing: image histogram, histogram equalization	1	2, 6	1
	Numerical on histogram equalization, histogram specification, numerical on histogram specification		2	1
	Spatial filters for smoothing operations: linear filters (average and weighted average), order statistics (nonlinear) filters: median, min, max filters.	1	2, 6, 7	1
	Spatial filters for sharpening operations: Convolution vs. correlation, objective (integration, differentiation, application of sharpening),	1	2, 6	1
	First order and second order derivative operators and their response, Laplacian operator, unsharp masking,	1	2	1
Unit 2	Filtering in the Frequency Domain, Image Restoration	9		
	Frequency domain approach: low pass filtering, high pass filtering, Laplacian, high boost filtering.	1	2	1, 2, 3
	Image transform and its importance, Fourier transform, 1D FT, 1D Discrete Fourier Transform (DFT)	1	2	1, 2, 3

			and the second second	Andhra Pradesh
	2D DFT and its property, Holomorphic filtering	1	2	1, 2, 3
	Image restoration: Fundamentals,	1	3	1, 2, 3
	Noise models, example images affected with noise	1	3	1, 2, 3
	Estimation of noise parameters models	1	3	1, 2 1, 2
	Restoration in presence of noise (Spatial domain techniques): mean filters, order statistics filters	1	3	1, 2
	Adaptive local noise filter, adaptive median filter	1	3	1, 2
	Estimation of degradation function: (i) by observation, (ii) by experimentation (iii) mathematical modelling	1	3	1, 2
Unit 3	Image Segmentation	9		
	Image segmentation: Fundamentals, point, line detection,	1	5, 6	1
	Basic edge detection techniques, Hough transform	1	5, 6	1
	Thresholding: Bi-modal and Multi-model Histogram,	1	5	1
	Noise effect on thresholding, Illumination effect on image thresholding	1	5	1
	Basic global thresholding, Optimal thresholding using Otsu's method	1	5	1, 2
	Multi-spectral thresholding, Region based segmentation.	2	5	1, 2
	Region growing, Region splitting and Merging.	2	5	1, 2
Unit 4	Color Image Processing, Image Compression	9		
	Colour image processing: Fundamentals, motivation, full and pseudo colour image processing	2	5	1
	Components of colour, primary and secondary colours, tristimulus, chromaticity diagram,	1	5	1
	Colour models: RGB, CMY, CMYK, HSI	1	5	1, 3
	Colour conversion, numerical on colour conversion	1	5	1, 3
	Image compression: Motivation, Applications, Compression ratio	1	4	1, 2
	Data redundancy- Coding, Inter-pixel and Psycho- visual redundancy,	1	4	1, 2
	JPEG Coding, Huffman Coding	1	4	1, 2
	LPZ coding, arithmetic coding, lossless and lossy predictive coding	1	4	1, 2

				The second second second second second
Unit	Image representation and Object Recognition	9		
5				
	Image presentation and description- Introduction, Motivations	2	5	3
	Shape features (Region-based shape representation and descriptors) Area, Euler's number, eccentricity, Elongatedness, rectangularity, direction, compactness. moments, covex hull.	2	5	3
	Texture features, Color features	1	5	3
	Object and Pattern Recognition: Pattern and pattern classes.	1	5	3
	Matching, classifier role minimum distance or nearest neighbor classifier.	1	5	1, 4
	Matching by correlation, Optimum statistical classifier	1	5	1, 4
	Neural network classifier	1	5	1, 4
	Total Contact Hours		45	

Course Unitization Plan – Lab

S. No.	Experiment Name	Required Contact Hours	CLOs Addressed	References Used
		30		
1.	Lab Experiment 1: Perform the following operations using library functions a. Read, Display and write any color image in other formats. b. Find RED, GREEN and BLUE plane of the color image. c. Convert color image to grayscale image and binary image d. Resize the image by one half and one quarter. i.e. Image rotates by 45, 90 and 180 degrees.	2	1	1
2.	Lab Experiment 2: Create black and white images (A) of size 1024x1024. Which consists of alternative horizontal lines of black and white? Each line is of size 128. Create black and white images (B) of size 1024x1024. Which consists of alternative vertical lines of black and white? Each line is of size128. Perform the following operations on Image A and Image B. a. Image addition of A and B b. Subtraction of A and B c. Multiplying Images of A and B d. Create a grayscale image of size 256 x 1024. Intensity of image should vary sinusoidally. e. Create a white image of size 256x256, with black box of size 58x58 at centre.	2	1	1

			Para harris	Andhra Pradesh
3.	Lab Experiment 3: Develop programs for following intensity transformation operation on a grayscale image. Collect any gray scale image from any source. Process that image using these operations. a. Image negative b. Log transformation and inverse log transform: $s = c \log (1+r)$, c is a const, $r \ge$ 0. s is pixel intensity of output image, r is the pixel intensity of input image. Study the effect of constant c on the quality of output image. c. Power law transformation: Study the effect of different values of Gamma used in this transformation. d. Contrast stretching e. Gray level slicing	3	2,3	1
4.	Lab Experiment 4: Develop programs for following spatial filtering operations on a grayscale image. a. Averaging: Implement averaging filtering operations for different window sizes and study their effect on the quality of output image. Write your observations on output image quality. b. Weighted averaging: Implement weighted averaging filtering operations for different window sizes and study their effect on the quality of output image. Write your observations on output image quality. c. Median filtering: Implement weighted averaging filtering operations for different window sizes and study their effect on the quality of output image. Write your observations on output image. Write your observations on output image. Write your observations on output image quality. d. Max filtering e. Min filtering	3	4,5	4
5.	 Lab Experiment 5: Take a grayscale image and add salt and pepper noise. Write programs for following operations and observe their outputs a. Linear smoothing or Image averaging b. Weighted averaging c. Median filtering. Compare the output quality among Image averaging and median filtering. d. Max filtering e. Min filtering 	4	2,6	1

			and a local day.	Andhra Pradesh
6.	Lab Experiment 6: Write programs to perform following sharpening operations on a grayscale image a. Laplacian filter b. Filtering using composite mask c. Unsharp masking d. High boost filtering e. Filtering using first order derivative operators such as sobel and prewitt mask.	4	2,6	1
7.	Lab Experiment 7: Write a program to improve contrast of an image using histogram equalization. The prototype of the function is as below: histogram_equalisation(input_Image, no_of_bins); The function should return the enhanced image. Consider two low contrast input images. Study the nature of the output image quality in each case by varying the number of bins.	3	2	1
8.	Lab Experiment 8: Take a low contrast grayscale image (A) and a high contrast gray scale image (B). Write a program to improve the contrast of A with the help of image B using histogram specification or matching. The prototype of the function is as below: Histogram_sp(input_Image, specified_Iage, no_of_bins); The function should return the enhanced image.	3	2	1
9.	 Lab Experiment 9: Develop programs to implement frequency domain smoothing filters (Ideal, Butterworth and Gaussian) and apply these filters on a grayscale image. a. Compare/comment on the output of Ideal, Butterworth and Gaussian Low pass Filters having the same radii (cutoff frequency) value. b. Consider a suitable gray scale image and demonstrate the ringing effect on the output of Ideal low pass frequency domain filter. c. Compare the output of Butterworth low pass filters (order n=2) for different cutoff frequencies (5, 15, 30, 90, 120). d. Compare the output of Gaussian low pass filters for different cut-off frequencies (5, 15, 30, 90, and 120). 	3	2	1,2,3

10.	Lab Experiment 10:	3		1,2,3
	Develop programs to implement frequency domain			
	sharpening/High pass filters (Ideal, Butterworth and			
	Gaussian) and apply these filters on a grayscale			
	image.			
	a. Compare/comment on the output of Ideal,			
	Butterworth and Gaussian High pass Filters having			
	the same radii (cutoff frequency) value.			
	b. Consider a suitable gray scale image and		2	
	demonstrate the ringing effect on the output of Ideal			
	high pass frequency domain filter.			
	c. Compare the output of Butterworth high pass			
	filters (order n=2) for different cut-off frequencies			
	(5, 15, 30, 90, 120).			
	d. Compare the output of Gaussian high pass filters			
	for different cut-off frequencies (5, 15, 30, 90, and			
	120).			
Tota	l Contact Hours		30	

- 1 Gonzalez, R. C. (2009). Digital image processing. Pearson education India.
- 2 Sridhar, S. (2016) Digital Image Processing, Oxford University Press.
- 3 Sonka, M., Hlavac, V., & Boyle, R. (2013). Image processing, analysis and machine vision. Springer.
- 4 Forsyth, D. A., & Ponce, J. (2002). Computer vision: a modern approach. prentice hall professional technical reference.

		Con	tinuous Le	earning Ass	sessments ((50%)	End Semester		
Bloom	Bloom's Level of					Practical	Exam (50%)		
Cognitive Task		CLA-1 (5%)	CLA2 (5%)	2 CLA-3 Mid (20%)			Th (30%)	Prac (20%)	
Level 1	Remember	70%	50%	40%	40%	20%	40%	30%	
Level I	Understand								
Level 2	Apply	30%	50%	60%	40%	30%	40%	30%	
	Analyse								
Level 3	Evaluate				20%	50%	20%	40%	
Level 5	Create								
r	Fotal	100%	100%	100%	100%	100%	100%	100%	

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

	DEEP LEARNING													
Course Code	CSE 457	Course Category	Stream Elective (E)	L-T-P-C	3	0	1	4						
Pre-Requisite Course(s)		Co-Requisite Course(s)	NIL	Progressive Course(s)		NIL								
Course Offering Department	CSE	Professional / Licensing Standards												
Board of Studies Approval Date		Academic Council Approval Date												

Course Objectives / Course Learning Rationales (CLRs)

Objective 1. Understand the fundamental concepts of ML/DL, tensor flow, and keras

Objective 2. Study of different activation functions and ANN.

Objective 3. Study and application of CNN, and RNN models

Objective 4. Application of different deep learning concepts.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainme nt Percentag e
Outcome 1	Illustrate the concepts of ML/DL	1	70	68
Outcome 2	Design and implement CNN model	2	70	65
Outcome 3	Design and implement RNN model	2	70	65
Outcome 4	Apply deep learning models to given problems.	3	70	60

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

CLOs	Program Learning Outcomes (PLO)														
	En gin eer ing Kn ow led ge	Pro ble m Ana lysis	Design and Develo pment	Anal ysis, Desi gn and Rese arch	Mo der n Too l and ICT Usa ge	Societ y and Multic ultural Skills	Enviro nment and Sustain ability	Mora l, and Ethic al Awar eness	Indiv idual and Team work Skills	Commu nication Skills	Project Manag ement and Financ e	Self - Dire cted and Life Lon g Lear ning	P S O 1	P S O 2	P S O 3
Outcom e 1	1	1	1	1	2								2	2	
Outcom e 2	2	2	3	2	3								3	2	
Outcom e 3	2	2	3	2	3								2	3	
Outcom e 4	2	2	3	3	3								2	3	
Course Average	2	2	3	2	3								2	3	

COURSE UNITIZATION PLAN: THEORY

Unit No.	Unit Name	Required Contact Hours	CLOs Addresse d	References Used
Unit 1	Introduction:	11		
	Overview of machine learning	2	1	1
	History of Deep Learning	1	1	1

	Total Contact Hours		45	
	Fraud Detection, Healthcare	2	4	3
	Visual Recognition	1	4	3
	Entertainment	1	4	3
	Virtual Assistants	1	4	3
	Natural Language Processing	1	4	3
	News Aggregation and Fraud News Detection	1	4	3
	Self-Driving Cars	1	4	3
	Image segmentation	1	4	3
Unit 5	Deep Learning applications	9	7 -	
	Encoder Decoder architectures	2	1,3	2
	GRU	1	1,3	2
	LSTM	1	1,3	2
	Seq2Seq RNNs	1	1,3	2
	Unfolded RNNs	1	1,3	2
	Introduction to RNNs	2	1,3	2
Unit 4	Recurrent Neural Networks	8		
	Problem and solution of under fitting and overfitting	2	1,2	3
	Long Short-Term Memory (LSTM)	2	1,2	3
	Principles behind CNNs	1	1,2	3
	Kernel filter	1	1,2	3
	Introduction to CNNs	2	1,2	3
Unit 3	Convolutional Neural Networks	8	1	2
	Vanishing gradient problem and solution	1	1	2
	Gradient Descent Rule	2	1	$\frac{2}{2}$
	Perceptron Training Rule	1 2	1	2 2
	Perceptrons: What is a Perceptron, XOR Gate Artificial Neural Networks: Introduction	1	1	1
	Activation Functions: Sigmoid, ReLU, Hyperbolic Fns, Softmax	2	1	1,2
Unit 2	ACTIVATION FUNCTIONS, PERCEPTRON, ANN	9		
	Keras	1	4	3
	Modularity, Sharing Variables	1	1	1
	TensorBoard	2	1	1
	Gradient Descent	1	1	1
	Linear classifiers, loss functions, Regression example	1	1	1
	Computational Graph, Key highlights, Creating a Graph	1	1	1
	Introduction to TensorFlow:	1	1	1

COURSE UNITIZATION PLAN: LAB

Unit Name	Required Contact Hours	CLOs Addressed	References Used
Lab 1: To implement a Multilayer Perceptron (MLP) using Keras with TensorFlow, and fine-tune neural network hyperparameters for regression problem (house price prediction).	3	1,2	1
Lab 2: To implement a MLP using Keras with TensorFlow for classification problem (heart disease prediction).	3	1,2,3	1
Lab 3: To implement a Convolution Neural Network (CNN) for dog/cat classification problem using TensorFlow/Keras.	3	2,3	1
Lab 4: To implement a CNN for handwritten digit recognition.	2	1,2,3	1
Lab 5: To Implement a CNN for object detection in the given image.	3	2,3	1
Lab 6: To implement a Long Short-Term Memory (LSTM) for predicting time series data.	3	3,4	
Lab 7: To implement a Seq2Seq Model for Neural Machine Translation.	3	3,4	1
Lab 8: To implement a Recurrent Neural Network (RNN) for predicting time series data.	3	3,4	1
Lab 9: To implement an Encoder-Decoder Recurrent neural network model for Neural Machine Translation.	3	2,3,4	1
Lab 10: Case Study 1: Object detection for Self- Driving Cars	3	1,2,3,4	1,2
Lab 11: Case Study 2: Object detection for Healthcare images	3	1,2,3,4	1,2
Total	30		

Buduma, N., Buduma, N., & Papa, J. (2022). Fundamentals of deep learning, 2nd ed. O'Reilly Media, Inc."
 Goodfellow, I., Bengio, Y., & Courville, A. (2016). *Deep learning*, 2nd ed. MIT press.

Other Resources

- 1. <u>https://www.youtube.com/watch?v=aPfkYu_qiF4&list=PLyqSpQzTE6M9gCgajvQbc68Hk_JKGBAYT</u>
- 2. https://www.coursera.org/professional-certificates/tensorflow

Bloom's Level of Cognitive Task		Cont	inuous L	earnin	ning Assessments (50%) End Semester Exam (50%)					
	CLA	A-1		Mid-1 CLA-2 CLA (15%)		LA-3				
	Th (5%)	Pr ac	Th	Pr ac	Th (5%)	Pr ac	Th (10 %)	Prac (15%)	Th (35%)	Prac (15%)

Level 1	Remember	40%	40%	20%	10%	10%	10%	10%
	Understand							
Level 2	Apply	30%	30%	40%	50%	40%	40%	40%
	Analyse							
Level 3	Evaluate	30%	30%	40%	40%	50%	50%	50%
	Create							
Т	Total		100%	100 %	100 %	100%	100%	100%

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

I incipies of soft Computing												
Course Code	CSE 458	Course Category	Stream Electives (SE)	L-T-P-C	3	0	1	4				
Pre-Requisite Course(s)	CSE 201, CSE 336	Co-Requisite Course(s)		Progressi ve Course(s)								
Course Offering CSE Department		Professional / Licensing Standards										

Principles of Soft Computing

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Understand the fundamental theory and concepts of neural networks, Identify different neural network architectures, algorithms, applications and their limitations.

- **Objective 2:** Understand appropriate learning rules for each of the architectures and learn several neural network paradigms and its applications.
- **Objective 3:** Comprehend the fuzzy logic and the concept of fuzziness involved in various systems and fuzzy set theory.

Objective 4: Understand the concepts of fuzzy sets, knowledge representation using fuzzy rules, approximate reasoning, fuzzy inference systems, and fuzzy logic.

Objective 5: Understand the Genetic Algorithm and able to identify the application area.

Objective 6: Understand soft computing techniques and their role in problem solving.Reveal different applications of these models to solve engineering and other problems.

	At the end of the course the learner will be able to Bloom s Leve Demonstrate neural network model		Expected Proficienc y Percentag e	Expected Attainme nt Percentag e
Outcome 1	Demonstrate neural network model	3	90%	75%
Outcome 2	Describe neural network architectures, algorithms, applications and their limitations	2	70%	65%
Outcome 3	Apply fuzzy logic and reasoning to handle uncertainty and solve engineering problems	3	80%	75%
Outcome 4	Apply genetic algorithms to combinatorial optimization problems	3	80%	75%
Outcome 5	Evaluate and compare solutions by genetic algorithms with traditional approaches for a given problem.	5	65%	60%

Course Outcomes / Course Learning Outcomes (CLOs)

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

				I	Progr	am L	learn	ing () utco	mes (PLO)			
CLOs	En gi ne eri ng K no wl ed ge	Pr ob le m A na lys is	De sig n an d De ve lo p m en t	A na lys is, De sig n an d Re se ar ch	M od er n To ol an d IC T Us ag e	So cie ty an d M ult ic ult ult ur al Sk ill s	En vir on m en t an d Su sta in ab ilit y	M or al, an d Et hi cal A wa re ne ss	In di vi du al an d Te a m w or k Sk ill s	Co m un ica tio n Sk ill s	Pr oj ect M an ag e m en t an d Fi na nc e	Se lf- Di re cte d an d Li fe Lo ng Le ar ni ng	PS O 1	PS O 2	PS O 3
Outcome 1	3	1	2	1	2	1	1	2	3	2	1	3	3	2	1
Outcome 2	3	2	1	2	2	2	2	2	3	3	2	3	3	2	1
Outcome 3	3	3	3	2	2	2	2	2	3	3	2	3	3	2	2
Outcome 4	3	3	3	2	3	2	2	2	3	3	2	3	3	3	2
Outcome 5	3	3	3	3	3	3	2	2	3	3	3	3	3	3	3
Course Average	3	2	2	2	2	2	2	2	3	3	2	3	3	2	2

Course Unitization Plan - Theory

Unit No.	Unit Name	Require d Contact Hours	CLOs Addresse d	Referenc es Used
Unit I	Introduction to Soft Computing, ANN	9		
	Introduction to Soft Computing, Artificial Neural Network (ANN)	1	1	1
	Fundamentals of ANN, Basic Models of an artificial Neuron, Neural Network Architecture	1	1,2	1
	Learning methods, Terminologies of ANN	1	1	1,3
	Hebb network	1	2	1,3
	Supervised Learning Networks: Perceptron, Adaline, Madaline	1	1	1
	Multi-Layer Perceptron	1	1,2	1
	Feed forward Back propagation Network	1	1,2	1
	Back propagation learning	1	1,2	1
	Learning Effect of Tuning parameters of the Back propagation	1	2,5	1
Unit II	Advanced Neural Network	9		
	RBF Network, Associative memory:	1	2	1,3
	Auto, hetero and linear associative memory network	1	2	1,3
	Adaptive Resonance Theory: ART1	1	2	1,3
	ART2	1	2	1,3
	Introduction to Computer vision	1	2	1,3
	Introduction to Convolutional Neural Network	1	2	1,3
	Popular architectures: AlexNet	1	2,5	1,3
	GoogleNet	1	2,5	1,3
	VGG Net	1	2,5	1,3
Unit III	Fuzzy Logic	9		
	FUZZY LOGIC : Fuzzy set theory:	1	3	2
	Crisp sets, fuzzy sets	1	3	2
	Crisp relations, fuzzy relations	1	3	2
	Fuzzy Systems	1	3	2,3
	Crisp logic, predicate logic	1	3	2,3
	Fuzzy logic	1	3	2,3
	fuzzy Rule based system	1	3,5	2,3
	Defuzzification Methods	1	3	2,3
	Fuzzy rule-based reasoning	1	3,5	2,3
Unit IV	Genetic Algorithms	9		
	Genetic Algorithms: Fundamentals of genetic algorithms:	1	4	3
	Encoding, Fitness functions, Reproduction.	1	4	3
	Genetic Modeling : Cross cover, Inversion and deletion	1	4	3

	Mutation operator, Bit-wise operators, Bitwise operators used in GA.	1	4	3
	Convergence of Genetic algorithm.	1	4	3
	Applications of Genetic Algorithms	1	4,5	3
	Real life Problems of Genetic Algorithms	1	5	3
	Particle Swarm Optimization	1	4,5	3
	Variants of PSO	1	4	3
Unit V	Advanced Soft Computing	9		
	Hybrid Soft Computing Techniques Hybrid system	1	4	2,3
	Advanced neural Networks	1	2	1,3
	Fuzzy logic and Genetic algorithms hybrids.	1	3,4	2,3
	Genetic Algorithm based Back propagation Networks	1	1,4	2,3
	GA based weight determination applications	1	4,5	2,3
	Fuzzy logic controlled genetic Algorithms	1	3,4	2,3
	Soft computing tools	1	5	3
	Soft computing Applications	2	5	3
	Total contact hours		45	

Course Unitization Plan - Lab

Unit No.	Experiment Name	Require d Contact Hours	CLOs Addresse d	Reference s Used
	Introduction to Soft Computing and ANN			
	Write a Python Program to implement a perceptron. The input is your semester marks.	1	1	1,3
Unit I	Write a python program to extend the exercise given above to implement Feed Forward Network. The inbuilt function should not be used.	2	1,2	1,3
	Write a python program to implement Hebb Network. The inbuilt function should not be used.	2	1,2	1,3
	Write a python program to implement Multilayer Perceptron. The inbuilt function should not be used.	2	2	1,3
	Write a python program to implement any ANN with back propagation learning Algorithm.	2	1,2	1,3
	Advanced Neural Network			
Unit II	Write a Python Program to implement ART1 and ART 2.	2	2	1,3
	Write a python program to implement CNN.	2	2	1,3

				CONTRACTOR CONTRACTOR
	Write a python Programming to realize the working principles of popular architectures such as AlexNet, GoogleNet and VGG Net.	2	2	1,3
	Fuzzy Logic			
Unit III	Write python Program to realize Fuzzy Sets arithmetic.	2	2	2,3
	Write a python Program to realize fuzzy relations.	1	2	2,3
	Write a python program to realize a fuzzy rule of any popular problem (s).	2	3	2,3
	Write a python program to realize a defuzzification scheme for the above exercise.	2	3	2,3
	Write a python Program to reason the fuzzy rules in exercises 12 and 13.	2	3	2,3
	Genetic Algorithms			
Unit IV	Write a python program to realize various steps of Genetic Algorithms.	2	4	3
	Write a Python Program to realize GA based back propagation Networks.	2	4,5	3
	Advanced Soft Computing			
Unit V	Write a Python Program to realize Fuzzy Controlled Genetic Algorithms.	2	4,5	1,3
	Total contact hours		30	

- 1. Sivanandan, S. N. and Deepa, S. N. (2011). Principles of Soft Computing Willey India, 2nd Edition.
- 2. Jang, J. S. R. (1997). Neuro-Fuzzy and Soft Computing/J.-SR Jang, C.-T. Sun, E. Mizutani. A Compute. Approach to Learn. Mach. Intell. Saddle River, NJ Prentice Hall, Inc.
- 3. Rajasekaran, S., & Pai, G. V. (2003). Neural networks, fuzzy logic and genetic algorithm: synthesis and applications (with cd). PHI Learning Pvt. Ltd..

Learning Assessment

	5	Cont	inuous Le	arning Ass	sessments	(50%)	End Semester		
Bloom's Level of Cognitive Task						Practical	Exam	(50%)	
		CLA-1	CLA2	CLA-3	Mid	(20%)	Th	Prac	
		(5%) (5%) (3		(5%)	(5%) (15%)		(30%)	(20%)	
Level	Remember	70%	50%	40%	40%	20%	40%	30%	
1	Understan								
1	d								
Level	Apply	30%	50%	60%	40%	30%	40%	30%	
2	Analyse								
Level	Evaluate				20%	50%	20%	40%	
3	Create								
r	Fotal	100%	100%	100%	100%	100%	100%	100%	

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

CKII IOGKAIIII & NEI WOKK SECUKII I											
Course Code	CSE 459	Course Category	Stream Elective (SE)	L-T-P-C	3	0	1	4			
Pre-Requisite		Co-Requisite		Progressive							
Course(s)		Course(s)		Course(s)							
Course	CSE	Professional /									
Offering		Licensing									
Department		Standards									

CRYPTOGRAPHY & NETWORK SECURITY

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Introduce cryptographic principles, methods, and algorithms for data protection.

- **Objective 2:** Understand network vulnerabilities and apply security measures to counter threats.
- **Objective 3:** Explore authentication techniques, key management, and digital signatures for communication.
- **Objective 4:** Analyse security protocols, access controls, and secure communication in networks.
- **Objective 5:** Develop skills to assess risks, design secure systems, and ensure data integrity.

	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainmen t Percentage
Outcome 1	Understand cryptographic algorithms, their principles, and applications in data	2	70 %	65%
Outcome 2	protection Analyze network vulnerabilities and apply measures to safeguard against attacks.	3	70 %	65%
Outcome 3	Implement secure communication protocols ensuring data integrity and confidentiality.	3	70 %	65%
Outcome 4	Evaluate and deploy encryption techniques for data privacy and non-repudiation.	3	70 %	65%
Outcome 5	Develop skills to manage network access, authentication, and intrusion detection.	4	70 %	65%

Course Outcomes / Course Learning Outcomes (CLOs)

					Prog	gram]	Learn	ing O	utcon	nes (P	LO)				
CLOs	E n g i n e e ri n g K n o w le d g e	P r o b le m A n al y si s	D e si g n a n d D e v el o p m e n t	A n al y si s, D e si g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S o ci et y a n d M u lt ic u lt u r al S k il ls	E n v ir o n m e n t a n d S u st ai n a b il it y	M o r al , a n d E t h ic al A w a r e s s	I n d i v i d u al a n d T e a m w o r k S k il ls	C o m u n ic at i o n S k il ls	P r o je ct M a n a g e m e n t a n d F i n a n c e	S el f- D ir e ct e d a n d L if e L o n g L e a r n g L e a r n g	P S O 1	P S O 2	P S O 3
Outcome 1	2	3	3	3	2								3	2	
Outcome 2	2	2	3	3	2								2	2	
Outcome 3	2	3	3	2	2								2	2	
Outcome 4	3	3	3	3	2								2	3	
Outcome 5	2	3	3	3	2								2	2	
Course Average	2	3	3	3	2								2	2	

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

Course Unitization Plan

Unit No.	Unit Name	Required	CLOs	References
		Contact	Addressed	Used
		Hours		
UNIT 1	Introduction	16		
	Introduction, Traditional Cipher structure	1	1	1,2
	Substitution Techniques: Caesar Cipher,	1	1	1
	Monoalphabetic Cipher, Playfair Cipher		1	1
	Hill Cipher, Poly Alphabetic Cipher, One	1	1	1.2
	TimePad		1	1,2
	Transposition Cipher: Rail Fence Cipher,	1	1	1
	Simple Columnar or Row Transposition		1	1

			Contraction of the second	Andhra Prade
	Motivation for the feistel Cipher structure, Stream Ciphers and block Ciphers	1	1	1
	The data encryption Techniques, Finite Fields	1	1	1
	Advanced Encryption Standard, AES	1	1	1
	encryption, AES decryption, AES example,	1	1	1,2
	results		1	1,2
	The avalanche effect, the strength of AES	1	1	1,2
	Stream Ciphers, RC1, RC4	1	1	1,2
	Lab Experiment 1: Write a encryption	1	3	2
	program:	-	5	_
	Input:			
	computerscienceengineeringsrmuniversity			
	Output:			
	gsqtyxivwgmirgiirkmriivmrkwvqyrmzivwmxc			
	Hint: key =4 (play with ascii value)			
	Lab Experiment 2: Raju send encrypted	1	3	2
	message			
	"ZICVTWQNGKZEIIGASXSTSLVVWLA"			
	to Rani. Can you build decryption process and			
	find out what is the message send to Rani.			
	Hint: try all keys for each character			
	Lab Experiment 3: Raju want to build	1	3	2
	encrypted and decryption algorithms of			
	Playfair Cipher. Help him to build a key matrix			
	using the key "srmapuniversity"			
	Lab Experiment 4: Implement AES Key	1	3	2
	Expansion			
	Lab Experiment 5:Implementation of AES	1	3	2
	encryption and decryption			
	Lab Experiment 6:Implementation of	1	3	2
	Simplified DES Encryption and decryption			
	Lab Experiment 7: Implementation of RC4	1	3	2
UNIT 2	Public-Key Cryptosystems	13		
	Fermat's and Euler's Theorems	1	2	1,2
	Public-Key Cryptography and RSA, Principles	1	2	1,2
	of public-key cryptosystems		2	1,2
	Applications for public-key cryptosystems,	1	2	1,2
	requirements for public-key cryptosystems			1,2
	public-key cryptanalysis. The RSA algorithm,	1		
	description of the algorithm computational		2	1,2
	aspects			
	the security of RSA, Diffie-hellman key	1	2	1,2
	exchange			1,2
	Elliptic Curve Cryptography systems, key	1	2	1,2
	exchange protocols			
	man in the middle attack	1	2	1,2

				Andhra Prade
	Elgamal Cryptographic systems	1	2	1,2
	Lab Experiment 8: Implementation of RSA	1	3	2
	algorithm.			
	Lab Experiment 9: Implementation of Diffie-	1	3	2
	Helman key exchanges			
	Lab Experiment 10: Implementation of elliptic-	1	3	2
	curve cryptography			
	Lab Experiment 12: Write a program for	1	3	2
	session Key establishment using RSA			
	Lab Experiment 13: Write a program to	1	3	2
	implement Diffie-Hellman Algorithm			
UNIT 3	Cryptographic Hash Functions and MAC	12		
	Introduction to Cryptographic Hash Functions	1	3	1,2
	Hash Functions Based on Cipher Block	1	2	1.0
	Chaining		3	1,2
	Secure Hash Algorithm (SHA), SHA1	1	3	1,2
	SHA-3, Application of Cryptographic Hash	1	2	
	Functions		3	1,2
	Message Authentication Codes (MAC):	1	2	1.0
	Message Authentication Requirements		3	1,2
	Message Authentication Functions	1	3	1,2
	Security of MACs	1	3	1,2
	MACs Based on Hash Functions: HMAC	1	3	1,2
	Lab Experiment 11: Implementation of Hash	2	3	2
	functions			
	Lab Experiment 13: Setup and configure a	2	3	2
	certificate authority using Easy-RSA, distribute			
	Certificate Authority's public certificate in a			
	LAN (/ NAT) network, create certificate			
	signing request, and revoke certificates			
UNIT 4	Authentication	13		
	Digital Signature: Digital Signatures, Elgamal	1	4	1
	Digital Signature Scheme		4	1
	Schnorr Digital Signature Scheme, NIST	1		
	Digital Signature Algorithm, Elliptic Curve		4	1
	Digital Signature Algorithm			
	RSA-PSS Digital Signature Algorithm	1	4	1
	Overview of Authentication Systems:	1		
	Password-Based Authentication, Address-		А	1
	Based Authentication, Cryptographic		4	1
	Authentication Protocols			
	KDCs, Certification Authorities (CAs),	1	А	1
	Session Key Establishment		4	1
	Security Handshake Pitfalls: Login, Mutual	1	А	1
	Authentication, Integrity/Encryption for Data		4	1

				Andhra Prade
	Two-Way Public Key Based Authentication, One-Way Public Key Based Authentication	1	4	1
	Mediated Authentication (with KDC), Needham-Schroeder, Expanded Needham-	1	4	1
	Schroeder Otway-Rees, Nonce Types. Strong Password Protocols: Lamport's Hash,	1	4	2
	Strong Password Protocols, Strong Password Credentials Download Protocols	1	4	2
	Lab Experiment 15: Write a program to demonstrate Authentication using symmetric/asymmitric key	2	3	2
	Lab Experiment 16: Write a program to implement the Digital Signature	1	3	2
UNIT 5	Internet Security	16		
	<i>IPSec:</i> Overview of IP Security (IPSec), IP Security Architecture, Modes of Operation	1	5	1
	Security Associations (SA), Authentication Header (AH), Encapsulating Security Payload (ESP)	1	5	1
	Comparison of Encodings	1	5	1
	Comparison of Encodings, Phase 1 IKE - Aggressive Mode and Main Mode	1	5	1
	Phase 2/Quick Mode, Traffic Selectors, The IKE Phase 1 Protocols	1	5	1
	Phase-2 IKE: Setting up IPsec SAs, ISAKMP/IKE Encoding	1	5	1
	Fixed Header, Payload Portion of ISAKMP Messages, SA Payload, SA Payload Fields	1	5	1
	Web Security Requirements: Web Security threats	1	5	1
	Web traffic Security Approaches. SSL/TLS: Secure Socket Layer (SSL)	1	5	1
	Transport Layer Security (TLS), TLS Architecture, TLS record protocol	1	5	1
	change cipher spec protocol, Alert Protocol, Handshake Protocol, Https	1	5	1
	SSH. Secure Electronic Transaction (SET): SET functionalities	2	3	2
	Dual Signature, Roles & Operations, Purchase Request Generation	2	3	2
	Purchase Request Validation, Payment Authorization and Payment Capture.	1	3	2
	Total contact hours	70		

- 1. Perlman, R., Kaufman, C., & Speciner, M. (2016). Network Security: Private Communication in a Public World. Pearson Education India.
- 2. Stallings, W. (2013). Cryptography and Network Security: Principles and Practice (6th ed.). Pearson Education.

Other Resources

- 1. Menezes, B. (2010) Network Security and Cryptography. Cengage Learning.
- 2. Krawetz, N. (2007). Introduction to Network Security. Cengage Learning.
- 3. Kahate, A. (2017). Cryptography and Network Security (3rd ed.). McGraw Hill.

Learning Assessment (Theory)

Dlag	m's Loval of	Continue	Continuous Learning Assessments (50%)							
Bloom's Level of Cognitive Task		CLA-1 (10%)	Mid-1 (15%)	CLA-2 (10%)	CLA-3 (15%)	Exam (50%)				
Level 1	Remember	70%	60%	30%	30%	60%				
Level I	Understand	/0%	00 %	3070	30%	00%				
Level 2	Apply	30%	40%	70%	70%	40%				
Level 2	Analyse	30%		/0%	70%	40%				
Lovel 2	Evaluate									
Level 3	Create									
Total		100%	100%	100%	100%	100%				

Learning Assessment (Lab)

		Continuous Lea	End		
Bloom's Level of Cognitive Task		Experiments (20%)	Record / Observation Note (10%)	Viva + Model (20%)	Semester Exam (50%)
Level 1	Remember	50%	50%	50%	50%
Level I	Understand	50%	30%	30%	30%
Level 2	Apply	50%	500/	50%	50%
Level 2	Analyse	30%	50%	30%	30%
Level 3	Evaluate				
Level 5	Create				
То	tal	100%	100%	100%	100%

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	CSE 460	Course	Stream	L-T-P-C	3	0	1	4
Course Coue		Category	Elective (SE)	L-I-I-C	5	U	1	+
Pre-Requisite		Co-Requisite		Progressive				
Course(s)		Course(s)		Course(s)				
Course		Professional /						
Offering		Licensing						
Department		Standards						

Web Application Penetration Testing

Course Objectives / Course Learning Rationales (CLRs)

Objective 1:Develop proficiency in identifying web vulnerabilities and understanding attack methodologies.

Objective 2:Acquire hands-on skills in using security tools to assess web application risks.

Objective 3:Master techniques to secure web services, databases, and authentication mechanisms.

Objective 4:Gain practical knowledge of exploiting and mitigating XSS, SQL injection, and other attacks.

Objective 5: Demonstrate the ability to apply cryptographic principles for web application security.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outc ome 1	Demonstrate comprehensive knowledge of web application vulnerabilities and their exploitation techniques.	3	70%	65%
Outc ome 2	Apply cryptographic principles and security measures to protect web applications from threats.	3	70%	65%
Outc ome 3	Perform effective penetration testing using tools like Burp Suite and OWASP ZAP.	3	70%	65%
Outc ome 4	Analyse and secure web services, preventing attacks on SOAP, REST, and other protocols.	4	70%	65%
Outc ome 5	Proficiently identify and mitigate SQL injection, XSS, session hijacking, and other common web threats.	4	70%	65%

Course Outcomes / Course Learning Outcomes (CLOs)

Course Articulation Matrix (CLO) to (PLO)

				I	Progr	am L	<i>learn</i>	ing C	Outco	mes (PLO)			
									In		Pr	Se	PS	PS	PS
CLOs	En gi ne eri ng K no	Pr ob le m A na	De sig n an d De ve lo	A na lys is, De sig n an	M od er n To ol an d	So cie ty an d M ult ic ult	En vir on m en t an d Su	M or al, an d Et hi cal		Co m m un ica tio n			PS O 1	PS O 2	PS O 3
	wl ed ge	lys is	p m en t	d Re se ar ch	IC T Us ag e	ur al Sk ill s	sta in ab ilit y	A wa re ne ss	w or k Sk ill s	Sk ill s	an d Fi na nc e	on g Le ar ni ng			

Outcome 1	3	3	2	3	2					3	3	
Outcome 2	2	3	3	3	3	3				3	2	
Outcome 3	2	3	2	3	3					2	2	
Outcome 4	2	3	3	3	3					2	2	
Outcome 5	2	3	3	3	3					2	2	
Course Average	2	3	3	3	3	3				2	2	

Course Unitization Plan - Theory

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
UNIT 1	Introduction	9		
	Introduction- A web security forensic lesson, Web languages	1	1	1,2
	Introduction to different web attacks. Overview of N-tier web applications	1	1	1
	Web Servers: Apache, IIS, Database Servers	1	1	1,2
	Review of computer security, Public Key cryptography, RSA	1	1	1
	RSA, Review of Cryptography Basics	1	1	1
	Review of Cryptography Basics, Network security Basics	1	1	1
	On-line Shopping, Payment Gateways	1	1	1,2
	Gathering information on your target, Fingerprinting the web server and applications	1	1	1,2
	Enumerating subdomains and resources	1	1	1,2
UNIT2	Unit-II	9		,
	Web Hacking Basics HTTP & HTTPS URL	1	2	1
	Web Under the Cover Overview of Java security Reading the HTML source, Encoding	1	2	1
	Cookies, Sessions, Applet Security Servlets Security Symmetric and Asymmetric Encryption	1	2	1,2
	Firewalls & IDS	1	2	1, 2
	Cross-Site Scripting: Anatomy of an XSS Exploitation	1	2	1
	Types of XSS, Finding XSS	1	2	1
	XSS Exploitation, Mitigation	1	2	2
	HTML5: Cross-Origin Resource Sharing, Cross-Windows Messaging	1	2	1,2
	Web Storage, WebSocket, Sandboxed frames	1	2	1,2
UNIT3	Unit Name 3	9		
	Digital Certificates, Hashing	1	3	1
	Hashing, Message Digest, & Digital Signatures	1	3	1,2
	Message Digest, & Digital Signatures	1	3	1,2
	Authentication and Authorization	1	3	1
	Authorization, Common Vulnerabilities	1	3	1
	Common Vulnerabilities, Bypassing Authorization	1	3	1,2

			r	An
	Bypassing Authorization	1	3	1
	Session Security: Weaknesses of the session			1,2
	identifier, Session Fixation, Cross-Site	2	3	
	Request Forgeries			
UNIT4	Unit Name 4	9		
	Web Services: Web Services	1	4	1,2
	Implementations	1	4	
	The WSDL Language, Attacks on SOAP	1	4	1
	and REST	1	4	
	XPath Injection: XML Documents and	1	4	1
	Databases	1	4	
	XPath, Detecting XPath Injection	1	4	1
	Exploitation, Best Defensive Techniques	1	4	1,2
	File and Resource Attacks: Path Traversal	1	4	1,2
	Path Traversal, File Inclusion	1	4	2
	Vulnerabilities	1	4	
	File Inclusion Vulnerabilities, Unrestricted	1	4	2
	File Upload	1	4	
	Clickjacking, HTTP Response Splitting	1	4	1,2
UNIT5	Unit Name 5	9		
	Basics, Securing databases	1	5	1,2
	Secure JDBC, Securing Large Applications	1	5	1
	Cyber Graffiti. Introduction to SQL	1	_	1,2
	Injections	1	5	,
	Finding SQL Injections, Exploiting In-band		_	1
	SQL Injections	1	5	
	Exploiting In-band SQL Injections,		_	1
	Exploiting Error-based SQL Injections	1	5	
	Exploiting Error-based SQL Injections	1	5	1
	Exploiting blind SQLi	1	5	1,2
	SQLMap, Mitigation Strategies	1	5	1,2
	NoSQL Fundamentals & Security, NoSQL			2
	Exploitation	1	5	-
Total Co	ontact Hours		45 Hours	1
	111110110		15 110415	

Course Unitization Plan - Lab

Exp No.	Experiment Name	Required Contact Hours	CLOs Addressed	References Used
1	Lab Experiment 1: Securing Web applications	2	3	2
	using Keytool & OpenSSL			
2	Lab Experiment 2: Implement a one-way SSL	2	3	2
	to a web app			
3	Lab Experiment 3: System Fingerprinting	2	3	2
	using nmap, Fingerprinting the web server			
	Netcat, WhatWeb, Wappalyzer			

				And
4	Lab Experiment 4: Inspecting the Cookie	2	3	2
	Protocol, login, cookie installation, Correct			
	cookie installation, Incorrect cookie installation			
5	Lab Experiment 5: Burp Suite	2	3	2
6	Lab Experiment 6: OWASP ZAP	2	3	2
7	Lab Experiment 7: XSS Attacks, Cookie	2	3	2
	Stealing through XSS, Defacement, XSS for			
	advanced phishing attacks, BeEF			
8	Lab Experiment 8:Simple SQL Injection	2	3	2
	scenario, SQL errors in web applications			
9	Lab Experiment 9: Finding the DBMS version,	2	3	2
	Dumping the database data, Finding the current			
	username, finding readable databases,			
	Enumerating database tables, Enumerating			
	columns			
10	Lab Experiment 10: Defending from	2	3	2
	inadequate password policy Strong password			
	policy Storing hashes Lockout/Blocking			
	requests			
11	Lab Experiment 11: Session Hijacking via	2	3	2
	Packet Sniffing, Session Hijacking via access			
	to the web server			
12	Lab Experiment 12: Local File Inclusion (LFI),	2	3	2
	Remote File Inclusion (RFI)			
13	Lab Experiment 13: WSDL Scanning, Attack	2	3	2
	in ction, SOAPAction Spoofing			
Total	Contact Hours		26 Hours	

- 1. McClure, Stuart, Saumil Shah, and Shreeraj Shah. (2003), Web Hacking: attacks and defense. Addison Wesley.
- 2. Garms, Jess and Daniel Somerfield. (2001) Professional Java Security. Wrox.

Learning Assessment (Theory)

		Conti	Continuous Learning Assessments (50%)						
Bloom's Level of Cognitive Task		CLA-1 (10%)	Mid-1 (15%)	CLA-2 (10%)	CLA-3 (15%)	Semester Exam (50%)			
Leve	Remember	70%	60%	30%	30%	60%			
11	Understand	70%	00%	30%	30%	00%			
Leve	Apply	30%	40%	70%	70%	40%			
12	Analyse	30%	40%	/0%	70%	40%			
Leve	Evaluate								
13	Create								
	Total	100%	100%	100%	100%	100%			

Learning Assessment (Lab)

		Continuous	End Semester		
	n's Level of nitive Task	Experiments (20%)	Record / Observation Note (10%)	Viva + Model (20%)	- Exam (50%)
Level	Remember	50%	50%	50%	50%
1	Understand	30%	30%	30%	30%
Level	Apply	50%	50%	50%	50%
2	Analyse	30%	30%	30%	30%
Level	Evaluate				
3	Create				
	Total	100%	100%	100%	100%

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	CSE 461	Course Category	Stream Elective (SE)	L-T-P-C	3	0	1	4
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course	CSE	Professional /		000000000000	I			
Offering Department		Licensing Standards						

VULNERABILITY ANALYSIS AND CYBER FORENSICS

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:**Develop proficiency in identifying web vulnerabilities and understanding attack methodologies.
- **Objective 2:**Acquire hands-on skills in using security tools to assess web application risks.
- **Objective 3:**Master techniques to secure web services, databases, and authentication mechanisms.
- **Objective 4:**Gain practical knowledge of exploiting and mitigating XSS, SQL injection, and other attacks
- **Objective 5:** Demonstrate the ability to apply cryptographic principles for web application security

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficienc y Percentag e	Expected Attainment Percentage
Outcome 1	Demonstrate comprehensive knowledge of web application vulnerabilities and their exploitation techniques	2	70 %	65%
Outcome 2	Apply cryptographic principles and security measures to protect web applications from threats.	3	70 %	65%
Outcome 3	Perform effective penetration testing using tools like Burp Suite and OWASP ZAP.	3	70 %	65%
Outcome 4	Analyze and secure web services, preventing attacks on SOAP, REST, and other protocols.	3	70 %	65%

				17003404
Outcome 5	Proficiently identify and mitigate	4	70 %	65%
	SQL injection, XSS, session			
	hijacking, and other common web			
	threats.			

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

						gram									
CLOs	EngineeringKnowledge	P r o b le m A n al y si s	D e si g n a n d D e v el o p m e n t	A n al y si s, D e si g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S o ci et y a n d M u lt ic u lt u r al S k il ls	E n v ir o n m e n t a n t a s t ai n a b il it y	M o r al , a n d E t h ic al A w a r e n e s s	I n d i v i d u al a n d T e a m w o r k S k il ls	C o m u ic at i o n S k il ls	P r o je ct M a n a g e m e n t a n d F i n a n c e	S el f- D ir e ct e d a n d L if e L o n g L e a r n i n g	P S O 1	P S O 2	P S O 3
Outcome 1	2	3	3	3	2								3	2	
Outcome 2	2	2	3	3	2								2	2	
Outcome 3	2	3	3	2	2								2	2	
Outcome 4	3	3	3	3	2								2	3	
Outcome 5	2	3	3	3	2								2	2	
Course Average	2	3	3	3	2								2	2	

Course Unitization Plan

Unit	Unit Name	Requir	CLOs	Referen
No.		ed	Address	ces
		Contac	ed	Used
		t Hours		
UNIT	Introduction	11		
1				
	Introduction- A web security forensic lesson, Web languages	1	1	1,2
	Introduction to different web attacks. Overview of N-tier web applications	1	1	1

				An
V	Web Servers: Apache, IIS, Database Servers	1	1	1,2
I	Review of computer security, Public Key cryptography	1	1	1
I	RSA. Review of Cryptography Basics	1	1	1
1	Network security Basics, On-line Shopping, Payment Gateways	1	1	1
(Gathering information on your target, Fingerprinting the web server and applications	1	1	1,2
	Enumerating subdomains and resources	1	1	1,2
	Example problems	1	1	1,2
I	Lab Experiment 1: Securing Web applications using Keytool& OpenSSL	1	3	2
I	Lab Experiment 2: Implement a one-way SSL to a web app	1	3	2
UNIT 2	Web Hacking	12		
I	Basics HTTP & HTTPS URL	1	2	1,2
	Web Under the Cover Overview of Java security Reading he HTML source	1	2	1,2
	Encoding, Cookies, Sessions	1	2	1,2
I	Applet Security Servlets Security Symmetric and Asymmetric Encryptions	1	2	1,2
	Firewalls & IDS	1	2	1,2
	Cross-Site Scripting: Anatomy of an XSS Exploitation	1	2	1,2
	Types of XSS, Finding XSS, XSS Exploitation, Mitigation	1	2	1,2
	rypes of ASS, 1 manig ASS, ASS Exploration, Mitigation	2	2	1,2
I	Lab Experiment 3: System Fingerprinting using nmap, . Fingerprinting the web server Netcat, WhatWeb, Wappalyzer	1	3	2
C	Lab Experiment 4: Inspecting the Cookie Protocol, login, coockie installation, Correct cookie installation, Incorrect cookie installation	1	3	2
I	Lab Experiment 5: Burp Suite	1	3	2
UNIT I 3	Digital Certificates	12		
I	Hashing, Message Digest, & Digital Signatures	2	3	1,2
	Authentication and Authorization:	1	3	1,2
(Common Vulnerabilities, Bypassing Authorization	1	3	1,2
	Session Security:	1	3	1,2
	Weaknesses of the session identifier	1	3	1,2
	Session Fixation	1	3	1,2
	Cross-Site Request Forgeries	1	3	1,2
			-	_ , _

				An
	Lab Experiment 7: XSS Attacks, Cookie Stealing through XSS, Defacement, XSS for advanced phishing attacks, BeEF	2	3	2
UNIT 4	Web Services	13		
	Web Services Implementations	1	4	1
	The WSDL Language	1	4	1
	Attacks on SOAP and REST.	1	4	1
	XPath Injection: XML Documents and Databases	1	4	1
	XPath, Detecting XPath Injection	1	4	1
	Exploitation, Best Defensive Techniques	1	4	1
	File and Resource Attacks	1	4	1
	Path Traversal, File Inclusion Vulnerabilities	1	4	1
	Unrestricted File Upload. Clickjacking,	1	4	2
	HTTP Response Splitting	1	4	2
	Lab Experiment 8: Simple SQL Injection scenario, SQL errors in web applications	2	3	2
	Lab Experiment 9: Finding the DBMS version, Dumping the database data, Finding the current username, Finding readable databases, Enumerating database tables, Enumerating columns	1	3	2
UNIT 5	SQL	16		
	Basics, Securing databases	1	5	1
	Secure JDBC, Securing Large Applications	1	5	1
	Cyber Graffiti	1	5	1
	Introduction to SQL Injections, Finding SQL Injections	1	5	1
	Exploiting In-band SQL Injections	1	5	1
	Exploiting Error-based SQL Injections	1	5	1
	Exploiting blind SQLi	1	5	1
	SQLMap, Mitigation Strategies	1	5	1
	NoSQL Fundamentals & Security	1	5	1
	NoSQL Exploitation	1	5	1
	Lab Experiment 10: Defending from inadequate password policy Strong password policy Storing hashes Lockout/Blocking requests	1	5	1
	Lab Experiment 11: Session Hijacking via Packet Sniffing, Session Hijacking via access to the web server	2	3	2
	Lab Experiment 12: Local File Inclusion (LFI), Remote File Inclusion (RFI)	2	3	2
	Lab Experiment 13: WSDL Scanning, Attack in action, SOAPAction Spoofing	1	3	2

- 1. McClure, Stuart, Saumil Shah, and Shreeraj Shah. (2003), Web Hacking:attacks and defense. Addison Wesley.
- 2. Garms, Jess and Daniel Somerfield. (2001), Professional Java Security. Wrox.

Learning Assessment (Theory)

Place	m's Level of	Continue	ts (50%)	End Semester		
	Cognitive Task		Mid-1 (15%)	CLA-2 (10%)	CLA-3 (15%)	Exam (50%)
Loval 1	evel 1 Remember	70%	60%	30%	30%	60%
Level 1	Understand	/0%	00%	30%	50%	00%
Level 2	Apply	30%	40%	70%	70%	40%
Level 2	Analyse	30%	40%	7070	70%	40%
Level 3	Evaluate					
Level 5	Create					
	Total	100%	100%	100%	100%	100%

Learning Assessment (Lab)

		Continuous 1	End Semester Exam (50%)		
Bloom's Level of Cognitive Task		Experiments (20%)	Record / Observation Note (10%)	Viva + Model (20%)	
Level 1	Remember	- 50%	50%	50%	50%
	Understand	30%	30%	30%	30%
Level 2	Apply	50%	50%	500/	50%
Level 2	Analyse	30%	30%	50%	30%
Level 3	Evaluate				
Level 5	Create				
	Total	100%	100%	100%	100%

SRM University – AP, Andhra Pradesh

Veerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

BLOCKCHAIN TECHNOLOGY

Course Code	CSE 462	Course Category	Stream Elective (SE)	L-T-P-C	3	0	1	4
Pre-Requisite Course(s)	Cryptography	Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department		Professional / Licensing Standards						
Board of Studies Approval Date		Academic Council Approval Date						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To Understand the types, benefits and limitation of block chain

Objective 2: To Explore the block chain decentralization and cryptography concepts.

- Objective 3: To Enumerate the Bitcoin features and its alternative options
- **Objective 4:** To Describe and deploy the smart contracts and summarize the block chain features outside of currencies.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom' s Level	Expected Proficienc y Percentag e	Expected Attainmen t Percentage
Outcome 1	Describe block chain technology and its applications	2	70%	65%
Outcome 2	Explain Cryptocurrency and its applications	2	70%	65%
Outcome 3	Develop and deploy Smart contract	3	70%	65%
Outcome 4	Develop block chain-based solutions and write smart contract using Ethereum Framework.	3	70%	65%
Outcome 5	Analyse and apply Deploy Decentralized Application	4	70%	65%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

					I	Program	n Lear	ning O	utcome	s (PLO)				
CLOs	Engi neer ing Kno wled ge	Prob lem Anal ysis	Desi gn and Dev elop men t	Anal ysis, Desi gn and Rese arch	Mod ern Tool and ICT Usa ge	Soci ety and Mult icult ural Skill s	Envi ron men t and Sust aina bilit y	Mor al, and Ethi cal Awa rene ss	Indi vidu al and Tea mw ork Skill s	Com mun icati on Skill s	Proj ect Man age men t and Fina nce	Self- Dire cted and Life Lon g Lear ning	PSO 1	PSO 2	PSO 3

Outcome 1	2									1	3	
Outcome 2	2	2	3	2	3				1	3	3	
Outcome 3	2	2	3	2	3				1	3	3	
Outcome 4	1	2	2	2	3				1	3	3	
Outcome 5	1	2	2	2	3				1	3	3	
Course Average	2	2	3	2	3				1	3	3	

Course Unitization Plan

Unit No.	Unit Name	Require d Contact Hours	CLOs Addresse d	Referenc es Used
Unit 1	Introduction	16		
	Need for Distributed Record Keeping, Modeling faults and adversaries.	2	2	1
	Byzantine Generals problem, Consensus algorithms and their scalability problems	2	2	1
	Blockchain based cryptocurrency, hash pointers, consensus, byzantine fault-tolerant distributed computing, digital cash etc	3	2	1
	Distributed Computing, Atomic Broadcast, Consensus, Byzantine Models of fault tolerance	2	2	1
	Basic Crypto primitives, Hash functions, Puzzle friendly Hash, Collison resistant hash, Hash pointer and Merkle tree,	3	2	1
	digital signatures, public key crypto, verifiable random functions, Zero-knowledge systems	2	2	1
	Lab Experiment: Use of MetaMask, Ethereum and Blocks representation	2	2	1
Unit 2	Blockchain 1.0	15		
	Creation of coins, Bitcoin Scripts, Bitcoin P2P Network	1	2	1,2
	Transaction in Bitcoin Network, Block Mining, Block propagation and block relay	1	2	1,2
	Consensus in Bitcoin: Distributed consensus in open environments, Consensus in a Bitcoin network, Proof of Work (PoW): basic introduction, Hashcash PoW, Bitcoin PoW, Attacks on PoW and the monopoly problem	3	2	1,3
	Payments and double spending, Proof of Stake, Proof of Burn and Proof of Elapsed Time	1	2	1,3
	The life of a Bitcoin Miner, Mining Difficulty, Mining Pool. Bitcoin scripting language and their use	1	2	1,3
	Lab Experiment: Implementation of Hashcash PoW Algorithm with varying difficulty level	2	2	1,3
	Lab Experiment: Use of Timestamp in Block	2	2	1,3
	Lab Experiment: Use of Transaction value in Block	2	2	1,3
	Lab assignment: Working on different wallet	2	2	1,3

Unit 3	Blockchain 2.0	19		12010444030597.0431
	Ethereum and Smart Contracts	1	3	1,4
	The Turing Completeness of Smart Contract Languages and verification challenges	1	3	2,3
	Using smart contracts to enforce legal contracts	1	3	1,5
	comparing Bitcoin scripting vs. Ethereum Smart Contracts,	2	3	1,2
	Dapps development	4	3	1,3
	Lab Experiment: Introduction to remix and its working	2	3	1,5
	Lab Experiment: Introduction to Solidity compiler and its different version	2	3	1,2
	Lab Experiment: Development of smart contracts	2	3	1,2
	Lab Experiment: Introduction to various testnetworks	2	3	1,3
	Lab Experiment: Deployment of smart contracts over different blockchain network	2	3	1,3,4
Unit 4	Blockchain 3.0	9		
	Hyperledger fabric, the plug and play platform and mechanisms in permissioned blockchain	1	4	1,3
	Architecture, Identities and Policies	1	4	1,2
	Membership and Access Control	1	4	2,5
	Channels, Transaction Validation	1	4	2,3
	writing smart contract using Hyperledger Fabric	1	4	1,2,5
	Lab Experiment: Hyperledger Fabric Installation	2	4	1,2,5
	Lab Experiment: Implementation and deployment of smart contracts and channel creation over Hyperledger fabric	2	4	2,5
Unit 5	Application of Blockchain	16		
	Cross border payments, Know Your Customer (KYC)	2	5	1
	Food Security	2	5	1
	Mortgage over Blockchain	2	5	1,2
	Blockchain enabled Trade	2	5	1,3
	Trade Finance Network, Supply Chain Financing, Identity on Blockchain	2	5	1,4
	Lab Experiment: Implementation of supply chain management for various domain like medicine supply chain, food supply chain	2	5	1,2,3
	Lab Experiment: Dapp Development and deployment over different web3.0 servers	2	5	1,2,3
	Lab Experiment: Learning of token based implementation and token wallet	2	5	1,2,3
	Total Contact Hours required	75		

- 1. Bashir, I. (2020). *Mastering Blockchain: A deep dive into distributed ledgers, consensus protocols, smart contracts, DApps, cryptocurrencies, Ethereum, and more.* Packt Publishing Ltd.
- 2. Laurence, T. (2019). Introduction to blockchain technology. Van Haren.
- 3. Modi, R. (2018). Solidity Programming Essentials: A beginner's guide to build smart contracts for *Ethereum and blockchain*. Packt Publishing Ltd.

Other Resources

1. Swan, M. (2015). Blockchain: Blueprint for a new economy. " O'Reilly Media, Inc.".

2. Antonopoulos, A. M. (2014). *Mastering Bitcoin: unlocking digital cryptocurrencies*. " O'Reilly Media, Inc.".

Learning Assessment

			Continuous	Learning Asse	essments (50)%)	E	nd
Bloon	n's Level of		Theo	Dutint	Sem Exam	ester (50%)		
Cogr	nitive Task	CLA- 1 (5%)	CLA-2 (10%)	CLA-3 (5%)	Mid-1 (10%)	Practical (20%)	Th	Prac
Leve 11	Remembe r Understan d	50%	40%	40%	40%	50%	30%	40%
Leve 12	Apply Analyse	50%	60%	60%	60%	50%	70%	60%
Leve 13	Evaluate Create							
	Total	100%	100%	100%	100%	100%	100 %	100 %

Data warehousing and Mining

Course Code	CSE 463	Course Category	Stream Elective (SE)	L-T-P-C	3	0	1	4
Pre-Requisite Course(s)	CSE 304 MAT 221	Co-Requisite Course(s)	Nil	Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards		Nil				

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Introduce the basic concepts of data mining techniques

Objective 2: Explain the concepts of association rule mining and frequent pattern mining, classification and clustering.

Objective 3: Discuss and analyse various classification algorithms, clustering algorithms. Data Mining trends and research frontiers.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Understanding of data warehouse modelling and implementation.	3	75%	70%
Outcome 2	Compare and evaluate association rule mining methods.	5	70%	65%
Outcome 3	Compare and evaluate classification and prediction methods.	5	70%	65%
Outcome 4	Compare and evaluate clustering methods.	5	70%	65%
Outcome 5	Study on Data Warehouse Trends and Research Frontiers	5	70%	65%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

					Prog	gram	Learn	ning C	Jutco	mes (PLC)			
CLOs	Engineering	Problem Analysis	Design and	Analysis, Design and Decentor	Too	Society and Multicultural Shills	Environment and Sustainability	Moral, and Ethical	Individual and	Communication Skills	Project Management	Self-Directed and Life Long Learning	PSO 1	PSO 2	PSO 3
Outcome 1	2	2	2	2								2	2	2	2
Outcome 2	2	2	3	3								2	3	2	2
Outcome 3	2	2	3	3								2	3	2	2
Outcome 4	2	2	3	3								2	3	2	2
Outcome 5	2	2	3	3								2	3	2	2
Course Average	2	2	3	3								2	3	2	2

Course Unitization Plan

Unit No.	Unit Name	Requir ed Contac t Hours	CLOs Address ed	Referenc es Used
Unit 1	Introduction	9		
	Data Warehousing and online analytical processing.	1	1	1
	Data Warehouse Modelling.	3	1	1, 2
	Data Warehouse Implementation.	3	1	1, 2
	Lab Experiment 1: Implementation of OLAP	2	1	1,5
	operations			
Unit 2	Association Rules in Knowledge Discovery	10		
	Introduction, Market-Basket Analysis	1	1	1
	Mining Frequent Patterns, Associations, and Correlations, Apriori Algorithm	1	1	1
	Pattern-Growth Approach for Mining Frequent Itemsets	1	1	1
	Mining Frequent Itemsets using Vertical Data Format, Mining Closed and Max Patterns	1	1, 2	1
	PatternMininginMultilevel,Multidimensional Space	1	1, 2	1
	Constraint-Based Frequent Pattern Mining	1	1, 2	1
	Mining High-Dimensional Data and Colossal Patterns	1	1, 2	1

	Mining Compressed or Approximate Patterns	1	1, 2	1
	 Lab Experiment 2: Data pre-processing techniques. Lab Experiment 3: Write a program in any programming language to generate at least 10,000 transactions in a text file with at least three items. Lab Experiment 4: Write a program to implement the APRIORI algorithm Lab Experiment 5: Write a program for FP-Growth algorithm. 	2	1	1,2,3,4
Unit 3	Classification	10		
	Basic Concepts, Decision Tree Induction	2	1, 3	1
	Bayes Classification Methods: Bayes' Theorem, Na ["] ıve Bayesian Classification, Rule-Based Classification	2	1, 3	1
	Model Evaluation and Selection	1	1, 3	1
	Bagging, Boosting and AdaBoost, Random Forests	2	1, 3	1, 3
	Improving Classification Accuracy of Class- Imbalanced Data	1	1, 3	1
	Genetic Algorithms, Rough Set Approach, Fuzzy Set Approaches	2	1, 3	1, 2
	Lab Experiment 8: Write a program to implement Decision tree-based classification. Lab Experiment 9: Write a program to implement Bayesian classification	2	2,3	1,2,3,4
Unit 4	Cluster Analysis	12		
	Introduction, k-Means, k-Medoids	2	1, 4	1
	Agglomerative versus Divisive Hierarchical Clustering, Distance Measures in Algorithmic Methods	2	1, 4	1
	Multiphase Hierarchical Clustering Using Clustering, Feature Trees	2	1, 4	1
	Multiphase Hierarchical Clustering Using Dynamic Modelling, Probabilistic Hierarchical Clustering	2	1, 4	1
	Density-Based Methods, Grid-Based Methods	2	1, 4	1
	 Lab Experiment 10: Write a program to implement K-means clustering. Lab Experiment 11: Write a program to implement Divisive clustering Lab Experiment 12: Write a program to implement Agglomerative clustering 	2	2,3	1,2,3,4

	Lab Experiment 13: Write a program to implement DBSCAN clustering			
Unit 5	Data Warehouse Trends and Research Frontiers	12		
	Mining complex data type.	3	1, 5	1
	Data Mining Applications	3	1, 5	1
	Data Mining and Society.	2	1, 5	1
	Data Mining Trends	2	1, 5	1, 2, 3
	Case Study	2	2,3	1,2,3,4
	Total Hours		53	•

1. Han, J. Kamber, M. Pei, J. (2011). Data Mining Concepts and Techniques, Third Edition Morgan Kaufmann

2. Olson, D. L., & Delen, D. (2008). Advanced data mining techniques. Springer Science & Business Media.

3. Aggarwal CC. (2013) Data mining: the textbook. Springer. William

Learning Assessment

			Contin	uous L	earning	g Asses	sments	(50%)		End Se	emester
Bloom's Level of Cognitive Task		-	-		lid-1 CLA 5%) (10%)		A-2 Mid- 0%) (15%			Exam	(50%)
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level	Remember	70%	50%	40%	40%	30%	30%	30%	30%	30%	30%
1	Understand										
Level	Apply	20%	30%	40%	40%	50%	50%	40%	50%	50%	50%
2	Analyse										
Level	Evaluate	10%	20%	20%	20%	20%	20%	30%	20%	20%	20%
3	Create										
Total		100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100%	100%

Applied Data Science

Course Code	CSE 464	Course Category	Stream Elective (SE)	L-T-P-C	3	0	1	4
Pre- Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Understand the skill sets and technologies required for data science.

Objective 2: Gain knowledge of data science process and basic tools for Exploratory Data Analysis

Objective 3: Learn various data science algorithms and its application domain.

Objective 4: Understand the implement recommendation system using fundamental mathematical and algorithmic ingredients.

Objective 5: Understand the use of data visualization tool.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom 's Level	Expecte d Proficien cy Percenta ge	Expected Attainm ent Percenta ge
Outcome 1	Demonstrate statistical measures to fit a model to a data.	2	75%	70%
Outcome 2	Apply data science algorithms such as Linear Regression, k-Nearest Neighbors (k-NN), k- means, and Naive Bayes to solve the given problems.	5	75%	70%
Outcome 3	Apply Feature Selection algorithms such as Filters, Wrappers, Decision Trees and Random Forests to solve a given problem	3	70%	60%
Outcome 4	Compute Recommendation Systems using Visualization tools based on the acquired data	4	70%	60%

					Prog	ram]	Learn	ing (Outco	mes	(PLO)			
CLOs	Engineering Knowledge	Problem Analysis	Design and Development	Analysis, Design and	Modern Tool and ICT	Society and Multicultural	Environment and	Moral, and Ethical	Individual and Teamwork	Communication Skills	Project Management and	Self-Directed and Life	P S O 1	P S O 2	P S O 3
Outcome 1	1	2		1									1		3
Outcome 2	2	2	3	3									3	2	3
Outcome 3	2	2	3	3									3	2	3
Outcome 4	2	2	2	3									3	2	3
Course Average	2	2	3	3									3	2	3

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

Course Unitization Plan

Unit No.	Unit Name	Require d Contact Hours	CLOs Addresse d	Referenc es Used
Unit 1		13		
	Introduction: What is Data Science? - Big Data and Data Science hype – and getting past the hype - Why now?	2	1	1,2,3,6,8
	Datafication- Current landscape of perspectives	1	1	1,2,3,5,9, 10
	Skill sets needed	1	1	1,2
	Statistical Inference - Populations and samples	1	1	1,2,6,9
	Statistical modelling,	1	1	1,2,6,9
	probability distributions,	1	1	1,2,6,9
	fitting a model	1	1	1,2,6,9
	Introduction to R	1	1	1,2,8
	Lab Experiment 1: Write R program to calculate the central tendency of any popular data set. The inbuilt functions in the python should not be used.	2	3	2
	Lab Experiment 2: Write R – Programming to plot various charts and graphs. You have to consider minimum two popular data sets and draw all the statistical observations.	2	3	2

Unit 2		17		Andhra Prades
	Exploratory Data Analysis and the Data Science Process	2	1	1,2,3
	Philosophy of EDA - The Data Science Process	2	1	1,2,3
	The Data Science Process	1	1	1,2,6
	Three Basic Machine Learning Algorithms – Introduction	1	1, 2	1-10
	Linear Regression	1	1, 2	5,7
	K-Nearest Neighbours (K-NN)	1	1, 2	5,7
	K-means	1	1, 2	5,7
	Lab Experiment 3: Write a R Program to apply EDA on any two popular data sets and provided your analysis and interpretations. Use matplotlib library of python along with other libraries for the analysis and interpretation.	2	2	3
	Lab Experiment 4: Write R program to implement Linear Regression. Also, write your own program to implement Linear Regression without using the inbuilt function. Compare and contrast the results.	2	2	5
	Lab Experiment 5: Write R program to implement K-Nearest Neighbors. Also, write your own program to implement K-Nearest Neighbors without using the inbuilt function. Compare and contrast the results.	2	2	5
	Lab Experiment 6: Write R program to implement K-Means using inbuilt Library. Also, write your own program to implement K-Means without using the inbuilt function. Compare and contrast the results.	2	3	5
Unit 3		19		
	One More Machine Learning Algorithm and Usage in Applications	1	2	5,7
	Motivating application: Filtering Spam - Why Linear Regression and k-NN are poor choices for Filtering Spam	1	1, 2	5,7,9,10
	Naive Bayes and why it works for Filtering Spam	1	1, 2	5,7
	Data Wrangling: APIs and other tools for scrapping the Web	1	1, 2	4-10
	Feature Generation and Feature Selection (Extracting Meaning From Data)	1	3	4-10
	Motivating application: user (customer) retention	1	3	4-10
	Feature Generation (brainstorming, role of domain expertise, and place for imagination) -	1	3	4-10
	Feature Selection algorithms	1	3	4-10
	Filters; Wrappers; Decision Trees; Random Forests	1	3	4-10

			10 miles 10.1	Andhra Frado
	Lab Experiment 7: Write a R program to implement a Spam Filter using Linear Regression	2	3	5
	and K-NN. Use a popular dataset.	2	5	5
	Lab Experiment 8: Write a R Program to			
	Scrapping the Web using suitable API. Create a			5
	usable dataset for classification and clustering	2	3	5
	purpose.			
	Lab Experiment 9: Write a R program to generate the features from the data set created by	2	3	5
	•	2	5	5
	you for Lab experiment 8. Lab Experiment 10: Write a R Program to			
		2	3	5
	implement Filter and Wrappers.			5
	Lab Experiment 11: Write a R Program to			5
	implement Decision Trees, Random Forests – The	2	3	5
	inbuilt functions should not be used for the			
TT. A	implementation.	17		
Unit 4		15		1.0.0
	Recommendation Systems: Building a User-	2	4	1,2,8
	Facing Data Product			1.2.0
	Algorithmic ingredients of a Recommendation			1,2,8
	Engine	1	4	
	Dimensionality Reduction	2	4	8,9
	Singular Value Decomposition - Principal	1	4	8,9
	Component Analysis -	1		
	Mining Social-Network Graphs	1	4	8,9
	Clustering of graphs - Direct discovery of	1	4	8,9
	communities in graphs	1	т	
	Partitioning of graphs - Neighbourhood properties	1	4	8,9
	in graphs	1	т	
	Lab Experiment 12: Write a R Program to			
	implement Singular Value Decomposition and	2	4	8
	Principal Component Analysis. Use any popular	2		
	data set.			
	Lab Experiment 13: Write a R Program to			
	extract the friendship details of your face book	2	4	8
	account as Social network Graph and represent in	2	4	
	various visual forms.			
	Lab Experiment 14: Write a R program to			
	extend the above exercise to discover the			8
	communities in the graph, partition the graph and	2	4	
	extracting the neighbourhood properties of the			
	graphs.			
Unit 5		11		
	Data Visualization	1	4	1,2,3,6
	L	1	i	
	Basic principles, ideas and tools for data	2		1,2.3.6
	Basic principles, ideas and tools for data visualization	2	4	1,2,3,6
		2	4	1,2,3,6

Discussions on privacy, security, ethics	1	4	1,2,3,6
A look back at Data Science	1	4	1,2,3,6
Next-generation data scientists	1	4	1,2,3,6
Lab Experiment 15: Write R Program using			
Bokeh 2.1.1 to realize the all the basic principles	2	4	2
of data visualization.			

- 1. Grus, J. (2019). Data science from scratch: first principles with python. O'Reilly Media.
- 2. VanderPlas, J. (2016). Python data science handbook: Essential tools for working with data. " O'Reilly Media, Inc.".
- 3. O'Neil, C., & Schutt, R. (2013). Doing data science: Straight talk from the frontline. " O'Reilly Media, Inc.".
- 4. Leskovec, J., Rajaraman, A., & Ullman, J. D. (2020). Mining of massive data sets. Cambridge university press.
- 5. Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.
- 6. Provost, F., & Fawcett, T. (2013). Data Science for Business: What you need to know about data mining and data-analytic thinking. " O'Reilly Media, Inc.".
- 7. Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction (Vol. 2, pp. 1-758). New York: springer.
- 8. Blum, A., Hopcroft, J., & Kannan, R. (2020). Foundations of data science. Cambridge University Press.
- 9. Zaki, M. J., & Meira, W. (2014). Data mining and analysis: fundamental concepts and algorithms. Cambridge University Press.
- 10. Mining, W. I. D. (2006). Data mining: Concepts and techniques. Morgan Kaufinann, 10(559-569), 4.

			Contin	uous L	earnin	g Asses	sments	(50%)		End Semester		
Bloom's Level of Cognitive Task			A-1 %)		d-1 5%)	-	CLA-2 Mid-2 (10%) (15%)		Exam (50%			
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac	
Level	Remember	70%	50%	40%	40%	30%	30%	30%	30%	30%	30%	
1	Understand											
Level	Apply	20%	30%	40%	40%	50%	50%	40%	50%	50%	50%	
2	Analyse											
Level	Evaluate	10%	20%	20%	20%	20%	20%	30%	20%	20%	20%	
3	Create											
	Total		100	100	100	100	100	100	100	100%	100%	
	10141	%	%	%	%	%	%	%	%			

Learning Assessment

Principles of Big Data Management

Course Code	CSE 465	Course Category	Stream Electives (SE)	L-T-P-C	3	0	1	4
Pre-Requisite Course(s)	SE1 VI	Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Understand the Big Data Platform and its Use cases.

Objective 2: Learn the overview of Apache Hadoop.

Objective 3: Gain knowledge of HDFS Concepts and Interfacing with HDFS.

Objective 4: Understand Map Reduce Jobs, Provide hands on Hadoop Eco System.

Objective 5: Apply analytics on Structured, Unstructured Data.

Objective 6: Exposure to Data Analytics with R.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom 's Level	Expecte d Proficien cy Percenta ge	Expected Attainm ent Percenta ge
Outcome 1	Identify Big Data and its Business Implications	2	70%	65%
Outcome 2	List the components of Hadoop and Hadoop Eco- System	1	70%	65%
Outcome 3	Access and Process Data on Distributed File System	2	70%	65%
Outcome 4	Analyse Job Execution in Hadoop Environment	4	70%	65%
Outcome 5	Develop Big Data Solutions using Hadoop Eco System	4	70%	65%
Outcome 6	Apply Machine Learning Techniques using R	3	70%	65%

	1				D	т		• •		(
		1			Progr	am I	<u>_earn</u>	ing C	Jutco	mes (PLO		1	1	
CLOs	En gi ne eri ng Kn ow led ge	Pr ob le m An aly sis	De sig n an d De vel op me nt	An aly sis , De sig n an d Re se arc h	M od er n To ol an d IC T Us ag e	So cie ty an d M ult icu ltu ral Sk ills	En vir on me nt an d Su sta ina bil ity	M or al, an d Et hic al A wa re ne ss	In di vi du al an d Te am wo rk Sk ills	Co m un ica tio n Sk ills	Pr oje ct M an ag em ent an d Fi na nc e	Se lf- Di rec ted an d Lif e Lo ng Le ar ni ng	PS O 1	PS O 2	PS O 3
Outcome 1	1		1										1	2	2
Outcome 2	2		1	1	3							1	3	2	2
Outcome 3	1	2	2	2	3							1	3	3	3
Outcome 4	1	2	2	2	3							1	3	3	3
Outcome 5	2	2	3	2	3							1	3	3	3
Outcome 6	2	2	2	2	3				2			1	3	3	3
Course Average	2	2	2	2	3				2			1	3	3	3

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

Course Unitization Plan- Theory

Unit No.	Unit Name	Requi red Conta ct Hour s	CLOs Addre ssed	Refere nces Used
Unit I		9		
1.	Big Data introduction - Big data: definition and taxonomy.	1	1	1
0.	Big data value for the enterprise.	1	1	1
0.	The Hadoop ecosystem	1	2	1,2,3
0.	Introduction to Distributed computing	1	3	1,2,3
0.	Introduction to Hadoop.	1	2	1,2,3
0.	Hadoop Distributed File System (HDFS) Architecture	1	3	1,2,3
0.	HDFS commands for loading/getting data	1	3	1,2,3
0.	Accessing HDFS through Java program	2	3	1,2,3
Unit II		9		
0.	Introduction to Map Reduce frame work	1	4	2,3
0.	Basic Map Reduce Programming	1	4	2,3

	-			
0.	Advanced Map Reduce programming	1	4	2,3
0.	Basic template of the Map Reduce program	1	4	2,3
0.	Word count problem	1	4	2,3
0.	Streaming in Hadoop	1	4	2,3
0.	Improving the performance using combiners	1	4	2,3
0.	Chaining Map Reduce jobs	1	4	2,3
0.	Joining data from different sources	1	4	2,3
Unit		6		
III		U		
0.	Querying big data with Hive: Introduction to HIVEQL.	2	5	4,5
0.	Hive QL: data definition	2	5	4,5
0.	Data manipulation	3	5	4,5
.Unit IV		7		
21.	Querying big data with Hive – Hive QL queries	2	5	4,5
22.	Hive QL Views	2	5	4,5
23.	Hive QL indexes	1	5	4,5
Unit V		14		
24.	Data Analytics using R: Introduction to R	3	6	6,7
25.	Creating a dataset	2	6	6,7
26.	Getting started with graphs	2	6	6,7
27.	Basic data management	4	6	6,7
28.	Advanced data management	3	6	6,7
Total C	ontact Hours		45	

Course Unitization Plan – Lab

Session No.	Description of Experiments	Requir ed Conta ct Hours	CLOs Addres sed	Referen ces Used
1.	a. Hadoop Installationb. Hadoop Shell Commands	4	2	1,2
2.	a. Writing a file from local file system to HadoopDistributed file system (HDFS)b. Reading a file from HDFS to local file system.	4	3	2,3
3.	a. Implementation of Word Count program using MapReduce without combiner logic.b. Implementation of Word Count program using MapReduce with combiner logic.	3	4	2,3
4.	Implementation of MapReduce algorithm for Matrix Multiplication.	3	4	3
5.	Use HiveQL to analyze the stock exchange dataset and calculate the covariance between the stocks for each month. This will help a stock-broker in recommending the stocks to his customers.	4	5	4

Total Contact Hours 30				
9.	Write a R program to visualize student marks of various subjects using Bar-chart and Scatter plot.	3	6	7
8.	Write a R program to create medical patients' status using data frame i) Patient age ii) Gender iii) Symptoms iv) Patient Status	3	6	6,7
7.	Write a R program to create student record using Vector concept.	3	6	6
6.	Implement JOINS using HIVE a. Inner Join b. Left outer join c. Right outer Join d. Full outer join	3	5	4,5

Recommended Resources

- 1. Erl, T., Khattak, W., & Buhler, P. (2016). Big data fundamentals: concepts, drivers & techniques. Prentice Hall Press.
- 2. White, T. (2012). Hadoop: The definitive guide. " O'Reilly Media, Inc.".
- 3. Lam, C. (2010). Hadoop in action. Simon and Schuster.
- 4. Capriolo, E., Wampler, D., & Rutherglen, J. (2012). Programming hive. " O'Reilly Media, Inc.".
- 5. Bansal, H., Chauhan, S., & Mehrotra, S. (2016). Apache Hive Cookbook. Packt Publishing Ltd.
- 6. Kabacoff, R. (2022). R in action: data analysis and graphics with R and Tidyverse. Simon and Schuster.Practical Data Science with R, Nina Zumel John Mount, Manning publications

		Conti	nuous Lo	earning A	Assessme	ents (50%)	End Semester Exam (50%)		
			Theory	(30%)					
Bloom's Level of Cognitive Task		CLA-1 (5%)	Mid- 1 (10%)	CLA- 2 (5%)	Mid- 2 (10%)	Practical (20%)	Th	Prac	
Level 1	Remember	- 50%	40%	40%	40%	50%	30%	40%	
	Understand	5070			-070	5070	3070	4070	
Level 2	Apply	- 50%	60%	60%	60%	50%	70%	60%	
Level 2	Analyse	30%	0070	0070			7070	00%	
Level 3	Evaluate								
	Create								
	Total		100%	100%	100%	100%	100%	100%	

Learning Assessment

Information Retrieval

Course Code	CSE 466	Course Category	Stream Elective (SE)	L-T-P-C	3	0	1	4
Pre- Requisite Course(s)	DS&A, PS, LA, ST	Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

- The aim of this course is to prepare the graduate and undergraduate computer science students for designing and evaluating IR systems. So that, the learning objectives of this course include:
- **Objective 1:** To learn the major milestones of historical development of IR systems.
- **Objective 2:** To learn an architecture of a generic IR system and how to build one from scratch.
- **Objective 3:** To understand how users interact with IR systems and how to maximize their satisfaction.
- **Objective 4:** To learn the major theories and algorithms that are powering the modern search engines.
- **Objective 5:** To gain hands-on experience in developing a working IR system.

	At the end of the course the learner will be able to	Bloom 's Level	Expecte d Proficien cy Percenta ge	Expected Attainm ent Percenta ge
Outcome 1	Students will understand and implement the basic concepts in indexing and its compressed construction	3	70%	60%
Outcome 2	Students will understand and implement the statistical IR models such as Probabilistic model, vector-space model, and language models.	3	70%	60%
Outcome 3	Students will build a document retrieval system through the practical sessions, including the implementation of a relevance feedback mechanism.	3	70%	60%
Outcome 4	Students will implement the Text/Document classification and clustering algorithms	4	70%	60%

Course Outcomes / Course Learning Outcomes (CLOs)

Outcome	Students will understand the issues involved IR			
5	techniques for the web including crawling, link-	3	70%	60%
	based algorithms.			

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

				•	Prog	ram I	Jearn	ing O	utco	mes (l	PLO))			
											Pr	Sel	PS	PS	PS
				An	Μ	So	En	Μ	In		oje	f-	0	0	0
			De	aly	od	cie	vir	ora	div		ct	Di	1	2	3
	En		sig	sis	ern	ty	on	l,	idu	Co	Μ	rec			
	gin	Pr	n	,	То	an	me	an	al	m	an	ted			
	eer	obl	an	De	ol	d	nt	d	an	mu	ag	an			
CLOs	ing	em	d	sig	an	Μ	an	Et	d	nic	em	d			
	Kn	An	De	n	d	ult	d	hic	Te	ati	ent	Lif			
	ow	aly	vel	an	IC	icu	Su	al	am	on	an	e			
	led	sis	op	d	T	ltu	sta	A	wo	Sk	d	Lo			
	ge		me	Re	Us	ral	ina	wa	rk	ills	Fi	ng			
			nt	sea	ag	Sk	bil	ren	Sk		na	Le			
				rch	e	ills	ity	ess	ills		nc	arn			
											e	ing	1	0	
Outcome 1	2												1	3	
Outcome 2	2	2	3	2	3							1	3	3	
Outcome 3	2	2	3	2	3							1	3	3	
Outcome 4	1	2	2	2	3							1	3	3	
Outcome 5	1	2	2	2	3							1	3	3	
Course Average	2	2	3	2	3							1	3	3	

Course Unitization Plan

Unit No.	Unit Name	Requir ed Contac t Hours	CLOs Addres sed	Refere nces Used
Unit 1	INTRODUCTION TO IR	9L hrs		
	IR Problem, IR System, The Web	1	1	1
	Search Interface, Visualizing Search Interface	1	1	1
	Inverted Index and Boolean Queries	1	1	1
	Tokenization, Stemming, Stop-words, Phrases, Phrasal Queries	1	1	1
	Index Construction	2	1	2
	Index Compression	2	1	2
	k-gram Indexes	1	1	1
		12P		
		hrs		
	Lab Experiment: Tokenization, Stemming, Stop words removal	2	1	1,2

			and a local set of	Andhra Prad
	Lab Experiment: Inverted index construction - Token			
	sequence, Sort, Dictionary & Postings,	2	1	1,2
	Implementation of Boolean queries.			
	Lab Experiment: Sort-based index construction.	2	1	1,2
	Lab Experiment: Implementation of External memory indexing - BSBI, SPIMI.	2	1	1,2
	Lab Experiment: Implementation of External memory indexing - SPIMI.	2	1	1,2
	Lab Experiment: Implementations of Dynamic	2	1	1,2
TI :4 0	indexing - Logarithmic merge.			
Unit 2	BOOLEAN MODELS, EVALUATION OF IR	8L hrs		
	SYSTEM Declear Modes	1	2	1.2
	Boolean Modes	1	2	1,2 1,2
	Vector Space Model	1	2	
	TF-IDF	1	2	1,2
	Cosine Measure, Document Length Normalization	1	2	1,2
	Probabilistic Models, Binary Independence Model	1	2	1,2
	Language Modelling	1	2	1,2
	Precision, Recall, F-Measure, E-Measure, Normalized Recall	1	2	1,2
	Evaluation Problems	1	2	1,2
		6P hrs		
	Lab Experiment: Implementation of TF-IDF, Vector space model, Cosine similarity.	2	2	1,2
	Lab Experiment: Implementation of Binary Independence Model	2	2	1,2
	Lab Experiment: Implementation of Okapi BM25	2	2	1,2
Unit 3	RELEVANCE FEEDBACK AND QUERY	<u> </u>	2	1,2
Unit 5	EXPANSION	5L hrs		
	Explicit relevance feedback, Explicit Feedback through clicks and local analysis	1	3	1,2
	Implicit relevance feedback through local & global analysis	1	3	1,2
	Document Format, Markup Language, Text Properties	1	3	1,2
	Document Processing, Organization, Text Compression	1	3	1,2
	Query Language and Properties	1	3	1,2
	Zuery Lunguage and Hopernes	¹ 2P hrs	5	1,2
	Lab Experiment: Dictionary compression -	<i>4</i> 1 III 3		
	Implementation of Blocking, Posting Compression -	2	3	1,2
.	Implementation of Gamma codes			
Unit 4	TEXT/DOCUMENT CLASSIFICATION	11L		
	CLUSTERING AND LSI	hrs		1.0
	Introduction to Classification, Naïve Bayes Models	1	4	1,2
	Rocchio Classification, K-Nearest Neighbours, SVM,	2	4	1,2
	Decision Trees, Bagging, Boosting, Choosing Right Classifier	2	4	1,2
	Introduction of Clustering, Evaluation of Clustering	1	4	1,2

	Divisive clustering, Low-Rank approximations	2	4	1,2
	Latent Semantic Indexing	1	4	1,2
	2	8P hrs		
	Lab Experiment: Implementation of Text/Document			
	classification algorithms: Naive Bayes models,	2	4	1,2
	Rocchio, k-Nearest Neighbours.			
	Lab Experiment: Implementation of Text/Document			
	classification algorithms: Support vector machine	2	4	1,2
	classifiers, Decision trees, Bagging, Boosting.			
	Lab Experiment: Implementation of Text/Document			
	clustering algorithms: k-means clustering, Hierarchical	2	4	1,2
	agglomerative clustering, Divisive clustering.			
	Lab Experiment: Implementation of Low-rank	2	4	1,2
	approximations, Latent semantic indexing	2	4	1,2
Unit 5	Web IR	9L hrs		
	Hypertext, Web Crawling, Indexes	2	5	1,2
	Search Engines	1	5	1,2
	Ranking	2	5	1,2
	Link Analysis	2	5	1,2
	Page Rank, Hits	2	5	1,2
		2P hrs		
	Lab Experiment: Development of a Web Crawler			
	and a small-scale web search engine - Ranking,	2	5	1,2
	PageRank, HITS			
		42L		
	Total Contact Hours required	hrs +		
	i otar Contact Hours required	30P		
		hrs		

Recommended Resources

- 1. Alfred V Aho, Monica S. Lam, Ravi Sethi and Jeffrey D Ullman, (2007), Compilers Principles, Techniques and Tools, 2nd Edition, Pearson Education.
- 2. Vassiliadis, Vassilis, et al. (2016) "D2. 3: Advanced compiler implementation." *Centre for Research and Technology Hellas, Tech.*
- 3. Cooper, Keith, and Linda Torczon. (2011), Engineering a compiler. Elsevier.
- 4. Charles N. Fischer, Richard. J. LeBlanc, (2008) "Crafting a Compiler with C", Pearson Education
- 5. <u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-004-computation-structures-spring-2017/c11/</u>

Other Resources

- 1. <u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-035-computer-language-engineering-spring-2010/</u>
- 2. https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/

Learning Assessment

Bloom's Level of	Continuous Learning Assessments (50%)	End
Cognitive Task	Theory (30%)	Semester

						Practical	Exam (50%)		
		CLA-1 (5%)	Mid-1 (10%)	CLA-2 (5%)	Mid-2 (10%)	(20%)	Th	Prac	
Leve	Remember	50%	40%	40%	40%	50%	30%	40%	
11	Understand	30%	40%	40%	40%	30%	30%	4070	
Leve	Apply	50%	60%	60%	60%	50%	70%	60%	
12	Analyse	30%	00%	00%	00%	30%	70%	00%	
Leve	Evaluate								
13	Create								
	Total	100%	100%	100%	100%	100%	100 %	100 %	

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal

Guntur District, Mangalagiri, Andhra Pradesh 522240

Parallel and Distributed Computing

Course Code	CSE 467	Course Category	Stream Elective (SE)	L-T-P -C	3	0	1	4
Pre- Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives

- **Objective 1:** To acquire a profound understanding of the principles and practical application of Parallel and Distributed Computing, to assess students' comprehension of the course.
- **Objective 2:** Understand the distributed and parallel computing systems.
- **Objective 3:** Acquainted with parallel and distributed programming languages such as MPI, Pthread, and OpenMP.
- **Objective 4**: Create parallel and distributed algorithms utilizing these parallel programming languages.

Course Outcomes (COs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	The capability to analyze intricate computing problems and employ computing principles, as well as other pertinent disciplines, to identify solutions.	2	70%	65%
Outcome 2	The capacity to create, execute, and assess a computing-centric solution for fulfilling a specified set of computing requirements within the program's field.	3	70%	65%
Outcome 3	The skill to employ computer science theory and fundamental software development principles in order to generate computing- centric solutions.	3	70%	65%
Outcome 4	The capacity to conceive, execute, and assess a computing-driven solution that aligns with a specified set of computing requirements within the program's domain.	4	70%	65%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

				Ι	Progr	am L	<i>learn</i>	ing C	outco	mes (PLO)			
CLOs	En gi ne eri ng Kn ow led ge	Pr ob le m An aly sis	De sig n an d De vel op me nt	An aly sis , De sig n an d Re se arc h	M od er n To ol an d IC T Us ag e	So cie ty an d M ult icu ltu ral Sk ills	En vir on me nt an d Su sta ina bil ity	M or al, an d Et hic al A wa re ne ss	In di vi du al an d Te a m w or k Sk ill s	Co m un ica tio n Sk ill s	Pr oj ect M an ag e m en t an t an fi na nc e	Se lf- Di rec te d an d Li fe Lo ng Le ar ni ng	PS O 1	PS O 2	PS O 3
Outcome 1	3	1	1	3	1							1	2	2	2
Outcome 2	3	3	2	1	3							2	2	2	2
Outcome 3	3	1	3	1	2							3	3	3	3
Outcome 4	2	1	3	1	3							3	3	3	3
Outcome 5	3	3	3	3	3							3	3	3	3
Course Average	3	2	3	2	3							3	3	3	3

Lesson Plan

Unit No.	Unit Name	Requir ed	CLOs	Referen
110.		Contac	Address	ces
		t Hours	ed	Used
Unit 1	Parallel Programming Platforms	7		
	Scope, issues, applications and challenges of Parallel		1	1
	and Distributed Computing	2	1	1
	Implicit Parallelism: Trends in Microprocessor			
	Architectures, Dichotomy of Parallel Computing	2	1	1
	Platforms			
	Physical Organization, Communication Costs in	1	1	1
	Parallel Machines	1	1	1
	Routing Mechanisms for Interconnection Networks	1	1	1
	GPU, co-processing.	1	1	1
Unit 2	Principles of Parallel Algorithm Design	13		
	Decomposition Techniques, Characteristics of Tasks	2	2	1,2
	and Interactions			
	Mapping Techniques for Load Balancing.	1	2	1,2
	CUDA programming model: Overview of CUDA,	2	2	1,3
	Isolating data to be used by parallelized code	-	_	1,5
	API function to allocate memory on parallel	2	2	1,3
	computing device, to transfer data	_	_	1,0
	Concepts of Threads, Blocks, Grids, Developing a	2	2	1,3
	kernel function to be executed by individual threads			
	Execution of kernel function by parallel threads	2	2	1,3
	transferring data back to host processor with API	2	2	1,3
Linit 2	function	7		
Unit 3	Analytical Modeling of Parallel Programs		2	1.4
	Sources of Overhead in Parallel ProgramsPerformance Metrics for Parallel Systems	2	3	1,4 2,3
	The Effect of Granularity on Performance	1	3	2,5
	Scalability of Parallel Systems	1	3	1,3
	Minimum Execution Time and Minimum Cost	1	5	1,2
	Optimal Execution Time	2	3	1,3
Unit 4	Dense Matrix Algorithm	9		
Om +	Matrix-Vector Multiplication	2	4	1,3
	Matrix-Matrix Multiplication	2	4	1,3
	Issues in Sorting on Parallel Computers	1	4	1,2
	Bubble Sort and Variants	1	4	1,3
	Quick Sort, Other Sorting Algorithms	3	4	6
Unit 5	Graph Algorithms	9		Ŭ
	Minimum Spanning Tree: Prim's Algorithm	1	5	1
	Single-Source Shortest Paths: Dijkstra's Algorithm	1	5	1
	All-Pairs Shortest Paths	1	5	1,2
	Transitive Closure, Connected Components	1	5	1,3
	Algorithms for Sparse Graph	1	5	1,4

Search Algorithms for Discrete Optimization Problems: Sequential Search Algorithms,	1	5	1,2,3
Parallel Depth-First Search	1	5	1,2
Parallel Best-First Search, Speedup Anomalies in Parallel Search Algorithms	2	5	1,2

Recommended Resources

- Barry Wilkinson and Michael Allen, (2001), Parallel Programming - Techniques and applications Using Networked Workstations a nd Parallel Computers (2nd Edition), Prentice Hall.
- 2. A Grama, A Gupra, G Karypis, V Kumar, (2003). Introduction to Parallel Computing (2nd ed.). Addison Wesley.
- 3. C Lin, L Snyder. (2008), Principles of Parallel Programming. USA: Addison-Wesley Publishing Company.
- 4. J Jeffers, J Reinders. Intel Xeon Phi Coprocessor, (2013), High-Performance Programming. Morgan Kaufmann Publishing and Elsevier.
- 5. T Mattson, B Sanders, B Massingill, (2004). Patterns for Parallel Programming. Addison Wesley Professional.

Learning Assessment (Macro)

		(Continuous Learning Assessments (50%)								
Bloom's Level of Cognitive Task			Theo	Practical	Semester Exam (50%)						
		CLA- 1 (5%)	Mid-1 (15%)	CLA-2 (5%)	CLA-3 (5%)	(20%)	Th	Prac			
Larva	Remembe										
Leve	r	50%	40%	40%	40%	50%	30%	40%			
11	Understan d										
Leve	Apply	50%	600/	60%	60%	50%	70%	60%			
12	Analyse	30%	60%	00%	00%	30%	70%	00%			
Leve	Evaluate										
13	Create										
	Total		100%	100%	100%	100%	100 %	100 %			

		Ciouu Comp	Juling					
Course Code	CSE 468	Course Category	Stream Elective (SE)	L-T-P-C	3	0	1	4
Pre-Requisite		Co-Requisite		Progressive				
Course(s)		Course(s)		Course(s)				
Course		Professional /		IEEE				
Offering	CSE	Licensing						
Department		Standards						

Cloud Computing

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To study the evolving computer model (cloud computing) and its characteristics

Objective 2: To discuss various virtualisation technologies and tools.

Objective 3: To distinguish different Service Models and Deployment Models

Objective 4: To gain knowledge over different cloud software environments, platforms and simulators.

Objective 5: To understand the security issues in the Cloud computing.

	At the end of the course the learner will be able to	Bloom 's Level	Expecte d Proficie ncy Percenta ge	Expecte d Attainm ent Percenta ge
Outcome 1	Define cloud computing and explain its essential characteristics. Analyze the trade-offs between deploying applications in the cloud and over the local infrastructure.	1	70%	70%
Outcome 2	Explain emerging Virtualisation technologies and tools including virtualisation of CPU, Memory and I/O devices.	2	70%	70%
Outcome 3	Describe and distinguish the cloud service (IaaS, Saas, Paas) & deployment models (Public, Private, Hybrid), and its infrastructure	3	70%	70%
Outcome 4	Understand the idea behind the cloud computing environments, platforms, and purpose of the cloud simulators.	3	70%	65%
Outcome 5	Identify security and privacy issues in cloud computing.	3	70%	65%

Course Outcomes / Course Learning Outcomes (CLOs)

						am L									
CLOs	En gi ne eri ng Kn ow led ge	Pr ob le m An aly sis	De sig n an d De vel op me nt	An aly sis , De sig n an d Re se arc h	M od er n To ol an d IC T Us ag e	So cie ty an d M ult icu ltu ral Sk ills	En vir on me nt an d Su sta ina bil ity	M or al, an d Et hic al A wa re ne ss	In di vi du al an d Te am wo rk Sk ills	Co m un ica tio n Sk ills	Pr oje ct M an ag em ent an d Fi na nc e	Se lf- Di rec ted an d Lif e Lo ng Le ar ni ng	PS O 1	PS O 2	PS O 3
Outcome 1	3	1	1	3	1							1	2	2	2
Outcome 2	3	3	2	1	3							2	2	2	2
Outcome 3	3	1	3	1	2							3	3	3	3
Outcome 4	2	1	3	1	3							3	3	3	3
Outcome 5	3	3	3	3	3							3	3	3	3
Course															
Average	3	2	3	2	3							3	3	3	3

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

Course Unitization Plan

Unit No.	Unit Name	Requir ed Contact Hours	CLOs Address ed	Referen ces Used
Unit 1	Introduction to Cloud Computing	8		
	Evolution of Cloud Computing	1	1	1,4
	Cloud Computing definition and characteristics (elasticity, multi-tenant, on-demand, ubiquitous access)	2	1	1,4
	Cloud Computing characteristics (usage metering, self-service, sla-monitoring, etc.)	2	1	14
	Basic concepts and Terminology	1	1	1,4
	Goals and Benefits	1	1	1,4
	Issues, Risks and Challenges	1	1	1,4
Unit 2	Virtualization	9		
	Implementation levels of virtualization	1	2	2
	Virtualization structures/tools	1	2	2
	Virtualization mechanisms	1	2	2
	Virtualization of CPU, Memory and I/O devices	2	2	2
	Virtual clusters and resource management	3	2	2

				Andhra Pras
	Virtualization for Data center automation.	1	2	2
	Lab Experiment: Basics of Virtualization: VMM,			
	Example of VMM (virtualbox), Cretaion of a VM,	4	2	1
	Networking and communication between VMs			
Unit	Service Models and Deployment Models	10		
3		10		
	Cloud Computing Architecture and reference model	1	3	1,2
	Infrastructure- and hardware-as-a-service	1	3	1,2
	Platform as a service	1	3	1,2
	Software as a service	1	3	1,2
	Public clouds	1	3	1,2
	Private clouds	1	3	1,2
	Hybrid clouds	1	3	1,2
	Community clouds and Multi Clouds	1	3	,
	Cloud computing applications and paradigms	2	3	1,2
	<i>Lab Experiment:</i> VM Creation in public cloud and			1,2
	deployment of web application in created VM.	3	3	1
	Lab Experiment: Hadoop Map Reduce application	3	3	1
Unit	Cloud Software Environment, Platforms, and	5	5	1
4	Simulators	9		
4	Open Stack Cloud, Aneka Cloud	1	4	2,5
	Amazon EC2, Google App-Engine	2	4	2,3
	Windows Azure, Rack space	1	4	2
	VMware vCloud, Eucalyptus	1	4	2
	HDFS, Google Storage	2	4	2
	ObjectStore S3, Amazon Dynamo,	1	4	2
	CloudSim, CloudAnalyst, GreenCloud	1	4	2
	Lab Experiment: Introduction to CloudSim:			
	Installation and Execution, Cloud Datacenter, Network	2	4	1
	Topology.			
	Lab Experiment: Simulation of a Cloud Framework:			_
	Creating a DC, Creation of Tasks, Creation of VMs,	4	4	Internet
	Defining task and VM characteristics, execution of	·		resource
	tasks on VMs.			
	Lab Experiment: Resource Allocation in Cloud			
	Datacenter: Experimenting and understanding various			
	resource allocation policies, Changing the resource	4	4	2,4,5
	allocation policy, effects of resource allocation	·		2, 1,0
	policies.			
	Lab Experiment: Power Management in Cloud			
	Datacenters: Creation of a power datacenter,	4	4	50%
	understanding various power saving techniques.			
Unit	Security	9		
5)		
	The Top Concern for Cloud Users, Privacy and	2	5	3
	Privacy Impact Assessment	2		
	Trust, Operating System Security	1	5	3

5	3
5	3
5	3
5	3
5	3
5	Internet resource
3,4,5	Internet resource s
45	-
30	
	45

Recommended Resources

1] Buyya, Rajkumar, Christian Vecchiola, and S. Thamarai Selvi. (2013), Mastering cloud computing: foundations and applications programming. Newnes.

[2] Kai Hwang. Geoffrey C. Fox. Jack J. Dongarra, (2012). Distributed and Cloud Computing. Elsevier.

[3] Marinescu, Dan C. (2017), Cloud computing: theory and practice. Morgan Kaufmann.

Other Resources

[4] Thomas, Erl, Mahmood Zaigham, and Puttini Ricardo, (2013). "Cloud Computing Concepts, Technology & Architecture."

[5] Cloud computing, Black book. Deven Shah, Kailash Jayaswal, Donald J. Houde, Jagannath Kallakurchi.

	0		Continuous Learning Assessments (50%)								
Bloom's Level of Cognitive Task		CLA-1 (10%)		Mid-1 (15%)		CLA-2 (10%)		Mid-2 (15%)		Semester Exam (50%)	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
	Remember										
Level 1	Understan	50%	40%	40%	40%	50%	30%	40%	40%	40%	40%
	d										
Level 2	Apply	50%	60%	60%	60%	50%	% 70%	60%	60%	60%	50%
Level 2	Analyse	30%	00%			3070				00%	3070
Lovel 2	Evaluate										10%
Level 3	Create										10%
т	T-4-1		100	100	100	100	100	100	100	100	100
Total		%	%	%	%	%	%	%	%	%	%

Learning Assessment

Edge Computing

Course Code	CSE 469	Course Category	Stream Elective (SE)			0	1	4					
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)									
Course Offering Department	CSE	Professional / Licensing Standards	OpenEdge, IEEE 1934, IETF										

Course Objectives

Objective 1: To understand the limitations of today's Cloud computing models which are not designed for the volume, variety, and velocity of data generated by billions of Internet of Things (IoT) devices.

Objective 2: To understand the features of Edge Computing architecture and analyse business models that address the challenges of resource management and optimization.

Objective 3: To familiarize with Edge applications that monitor real-time data from networkconnected things and initiating action involving machine-to-machine (M2M) communication.

Objective 4: To understand how developers, write IoT applications for Edge Computing nodes that are closest to the network edge and ingest the data from IoT devices.

Objective 5: To understand how Edge Nodes, extend the Cloud to the Network Edge through the Case studies for Response time, Data storage time, coverage area, and kinds of applications.

	At the end of the course the learner will be able to	Bloom 's Level	Expecte d Proficien cy Percenta ge	Expected Attainme nt Percenta ge
CO 1	Demonstrate various architectural models and design issues in Edge Computing.	2	65%	60%
CO 2	Learn and apply various Edge+IoT communication paradigms and Edge+Edge Middleware.	4	65%	60%
CO 3	Identify and mitigate Resource management and optimization challenges of Edge Computing model.	3	65%	60%
CO 4	Develop efficient models for deployment and dimensioning of edge networks	2	65%	60%

Course Outcomes (COs)

CO 5	Will gain hands on experience with different case	6	65%	60%
	studies and simulation frameworks for real-life			
	Edge applications.			

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

]	Progr	am L	<i>learn</i>	ing C		mes (PLO)			
CLOs	En gi ne eri ng Kn ow led ge	Pr ob le m An aly sis	De sig n an d De vel op me nt	An aly sis , De sig n an d Re se arc h	M od er n To ol an d IC T Us ag e	So cie ty an d M ult icu ltu ral Sk ills	En vir on me nt an d Su sta ina bil ity	M or al, an d Et hic al A wa re ne ss	In di vi du al an d Te am wo rk Sk ills	Co m un ica tio n Sk ills	Pr oje ct M an ag em ent an d Fi na nc e	Se lf- Di rec ted an d Lif e Lo ng Le ar ni ng	PS O 1	PS O 2	PS O 3
Outcome 1	3	1	1	3	1							1	2	2	2
Outcome 2	3	3	2	1	3							2	2	2	2
Outcome 3	3	1	3	1	2							3	3	3	3
Outcome 4	2	1	3	1	3							3	3	3	3
Outcome 5	3	3	3	3	3							3	3	3	3
Course Average	3	2	3	2	3							3	3	3	3

Course Utilization Plan- Theory

Unit No.	Unit Name	Required Contact Hours	CLOs Address ed	Referenc es Used
Unit 1	Introduction			
	Cloud Computing Fundamentals	1	1,2	1,2
	Limitation of Cloud computing, the	1	1,2	1,2
	Needs of Edge Computing			
	Edge definition, Characteristic Features	1	1,2	1,2
	of Edge computing – SCALE			
	Architectural differences between	1	1,2	1,2
	Cloud and Edge computing			
	Edge Computing Models (Service	2	1,2	1,2,3
	models)			
	Edge and Edge Illustrative Use Cases	2	1,2	1,2,3
	Opportunities and Challenges	1	1,2	1,2,3

				a shink the last of
LLait O	Dismutive Technology Englisher for			
Unit 2	Disruptive Technology Enablers for			
	Edge Computing Edge Computing for IoT: Definition	1	1.0	1.0
	and Requirements	1	1,2	1,2
	OpenEdge	1	1,2	1.2
	· · · ·	2		1,2 1,2
	Communication technologies for edge computing- 4G, 5G, 6LoPAN, DSRC		1,2	
	Protocols and Algorithms for edge communication	2	1,2	1,2
	Software defined networking for edge computing	1	1,2	3
	Caching and Networking in 5G edge networks	1	1,2	3
Unit 3	Middleware for Edge and Edge			
	Computing			
	Need for Edge and Edge Computing Middleware	1	2,3	1,3
		1	2.2	1.2
	Design goals	1	2,3	1,3
	Quality of Service (QoS) in edge computing	2	2,3	1,2,3
	Authentication. privacy and security of	2	2,3	1
	edge nodes		,	
	Data management in edge computing	1	2,3	1
	Challenges and research prospects	1	2,3	1,2,3
Unit 4	Deployment and Dimensioning of Edge Networks			
	Introduction to Edge node placement problem	1	3,4	1,2
	Optimization models for edge node	2	3,4	1,2
	placement problem		- , -	- ,
	Resource provisioning in edge networks	2	3,4	1,2,3
	Mobility models for edge nodes	1	3,4	2
	Edge orchestration	1	3,4	1
Unit 5	Modeling and Simulation of Distributed Edge Environment			
	Introduction to modeling and simulation	1	2,3,5	1
	EdgeNetSim++: Architecture	1	2,3,5	1
	EdgeNetSim++: Installation and Environment Setup	1	2,3,5	1
	OMNeT++ Installation and sample programs	1	2,3,5	1
	Sample Edge Simulation	2	2,3,5	1
	Advanced topics in edge research	2	2,3,5	1,2,3

Course Utilization Plan- Lab

Ex p No.	Experiment Name	Requir ed Contact Hours	CLOs Addresse d	Referenc es Used
1	iFogSim Simulator and its Components and Installation of iFogSim			
2	Create Fog nodes with heterogeneous configurations and create different application models.			
3	Designing Sensors with different tuple emission rate			
4	Mobility of a Fog device and Make Cluster of Fog devices.			
5	Connect lower-level Fog devices with nearby gateways			
6	Placement Policies			
7	A Case Study in Smart Healthcare			
8	A Case Study in Gaming			
9	A Case Study of Multi Application Placement			
10	Introduction Raspberry Pi			
11	Installing Raspbian OS on a Raspberry Pi			
12	Setting up an IoT testbed and coding of a simple IoT+Edge application to monitor health of the patients / soil.			

Learning Assessment (Macro)

			Conti	nuous I	Learnin	g Assess	sments ((50%)		End	
Bloon	Bloom's Level of		CLA-1		Mid-1		CLA-2		d-2	Semester	
Cognitive Task		(10	%)	(15%)		(10%)		(15%)		Exam (50%)	
-		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
	Remembe	40%		60%		50%		40		50%	50%
Leve	r										
11	Understan										
	d										
Leve	Apply	60%		40%		50%		60%		50%	50%
12	Analyse										
Leve	Evaluate										
13	Create										
	T . 4 . 1			100		100		100		100	100
Total		%		%		%		%		%	%

Course Code	CSE 470	Course Category	Stream Elective (SE)	L-T-P-C	3	0	1	4
Pre-Requisite Course(s)	CSE 467 & CSE 468	Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Service Oriented Computing

Course Objectives

- **Objective 1:** To understand the limitations of today's computing models which are not designed for the volume, variety, and velocity of data generated by billions of IoT devices.
- **Objective 2:** To understand the features of Service-based architecture and analyse the applications of new and futuristic computing models.
- **Objective 3:** To familiarize with application development models which can be deployed at cloud to handle different applications.
- **Objective 4:** To understand and develop applications for different types of users accessing various services from heterogeneous devices.
- **Objective 5:** To understand how service model works, along with monitoring and metering policies.

	At the end of the course the learner will be able to	Bloom 's Level	Expecte d Proficien cy Percenta ge	Expected Attainm ent Percenta ge
Outcome 1	Demonstrate architectural models and design issues in service-based computing.	2	70%	65%
Outcome 2	Develop features of Service-based architecture and analyse the applications of new and futuristic computing models.	3	70%	65%
Outcome 3	Identify application development models which can be deployed at cloud to handle different applications.	3	70%	65%
Outcome 4	Develop applications for different types of users accessing various services from heterogeneous devices.	3	70%	65%
Outcome 5	Working of service-based model along with monitoring and metering.	4	70%	65%

Course Outcomes (COs)

								ing O							
											Pr	Sel	PS	PS	PS
				An	Μ	So	En	Μ	In		oje	f-	Ο	0	0
			De	aly	od	cie	vir	ora	div		ct	Di	1	2	3
	En		sig	sis	ern	ty	on	l,	idu	Co	Μ	rec			
	gin	Pr	n	,	То	an	me	an	al	m	an	ted			
	eer	obl	an	De	ol	d	nt	d	an	mu	ag	an			
CLOs	ing	em	d	sig	an	Μ	an	Et	d	nic	em	d			
	Kn	An	De	n	d	ult	d	hic	Te	ati	ent	Lif			
	ow	aly	vel	an	IC	icu	Su	al	am	on	an	e			
	led	sis	op	d	Т	ltu	sta	Α	WO	Sk	d	Lo			
	ge		me	Re	Us	ral	ina	wa	rk	ills	Fi	ng			
			nt	sea	ag	Sk	bil	ren	Sk		na	Le			
				rch	e	ills	ity	ess	ills		nc	arn			
											e	ing			
Outcome 1	3	1	1	3	1							1	2	2	2
Outcome 2	3	3	2	1	3							2	2	2	2
Outcome 3	3	1	3	1	2							3	3	3	3
Outcome 4	2	1	3	1	3							3	3	3	3
Outcome 5	3	3	3	3	3							3	3	3	3
Course															
Average	3	2	3	2	3							3	3	3	3

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

Course Unitization Plan - Theory

Unit No.	Unit Name	Require d Contact Hours	CLOs Address ed	Referen ces Used
Unit 1	Introduction	7		
	Introduction to Web Services - fundamental of web services, basic operational model of web services	1	1	1
	Business motivations for web services, B2B, B2C, Technical motivations, basic steps of implementing web services.	1	1	1
	Benefits and challenges of using web services, tools and technologies enabling web services	1	1	1
	Web services Architecture and its characteristics, web services communication models, core building blocks of web services, web services technology stack	2	1	1
	Orchestration, Choreography. Service layer Abstraction - Application Service Layer, Business Service Layer, Orchestration Service Layer	2	1	
Unit 2	Service Oriented Architecture	12		
	Service–oriented Architecture (SOA), implementation view	1	2	1,2
	Logical view, process view, deployment view	1	2	1,2

Composition of web services, from application server to peer to peer, life in the runtime22Characteristics of SOA12	1,3
	1,3
Comparing SOA to client-server and distributed internet 1 2	1,5
architectures, Anatomy of SOA, How components in an 2 2	1,3
SOA interrelate	1,5
Fundamentals of SOAP-SOAP Message Structure, 2 2	
SOAP encoding, Encoding of different data types22	1,3
SOAP communication and messaging, SOAP message	
exchange models, limitations of SOAP 2 2	1,3
	1,3
,	1,5
Unit 3 Service Oriented Platforms 11	
WSDL, Anatomy of WSDL, Manipulating WSDL, web 1 3	1,4
service policy	
UDDI, Anatomy of UDDI 1 3	2,3
UDDI- UDDI registries, uses of UDDI Registry, UDDI	1,5
data structures, Programming with UDDI	
Publishing, searching and deleting information in a	1,2
UDDI Registry, Publishing API, limitations of UDDI	
Discovering Web Services, service discovery	
mechanisms, role of service discovery in a SOA, 1 3	1,3
Service Selection	
SOA support in J2EE: Java API for XML based web	
services (JAX-WS), Java architecture for XML binding 2 3	1,4
(JAXB), Java API for XML Registries (JAXR)	
Java API for XML based RPC (JAXRPC), Web	1,2
Services Interoperability Technologies (WSIT)	1,2
SOA support in .NET: Common Language Runtime,	
ASP.NET web forms, ASP.NET web services, Web 2 3	1,2
Services Enhancements (WSE)	
Unit 4Application Development Using Open Stack7	
Understanding Open stack eco system: Open stack Heat, 2 4	1.2
Open stack Database As A Service: Trove 2 4	1,3
Designate: DNS As A Service, Magnum 1 4	1,2
Murano: Application As A Service, Ceilometer:	
Telemetry As A Service Application development and 2 4	1,5
deployment in Open stack	
Building applications from the scratch, converting legacy	
applications into Open stack applications. Event Driven 2 4	1,3
Programs with Cloud	,
Unit 5 Monitoring And Metering 8	
Monitoring and metering, Updating and patching 1 5	1
Kubernetes: Concepts, Cluster Architecture15	1
Containers and Dockers, Workloads15	1,2
Services, Load Balancing, and Networking15	1,2
Policies, Scheduling and Eviction22	1,3
Cluster Administration Anigee Edge API development	1,4
lifecycle 2 5	1,2,3
Inceptit	

Course Unitization Plan - Lab

Exp No.	Experiment Name	Required Contact Hours	CLOs Addressed	References Used
1	Develop Java Based Program using JAXP or XML API in reading XML file for Students Information and Display HTML Table	2	1,2	1,4,7
2	Develop Java Based web Service using REST and SOAP Based web service in Netbeans for University Course List and Search Course based Course Title and Course ID	2	1,2	1,4,7
3	Create web calculator service in .NET and create Java client to consume this web service deployed using Apache AXIS	2	1,2	1,4,5
4	Develop same web service using JX-WS.	2	1,2	1,5,7
5	Using WS —GEN and WS-Import develop the java web service & call it by Java Client	2	2,3	1,5,7
6	Design WSDL document and UDDI registry for your web service	2	2,3	1,5,7
7	Open stack Heat	2	2,3,4	2
8	Opens tack Database As A Service: Trove	2	3,4	2
9	Designate: DNS As A Service	2	3,4	2
10	Magnum	2	3,4	2,6
11	Murano: Application As A Service	2	3,4	2
12	Building applications from the scratch	2	3,4	2
13	Converting legacy applications into Open stack applications	2	3,4	2
14	Kubernetes: Containers and Dockers	2	4,5	3
15	Kubernetes: Load Balancing, Scheduling	2	4,5	3
Tota	l Contact Hours		30	

Recommended Resources

- 1. Erl, T. (2005). Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
- Adkins, S., Belamaric, J., Giersch, V., Makogon, D., & Robinson, J. E. (2015). Openstack Cloud Application Development. John Wiley & Sons.
- 3. Sayfan, G. (2018). Mastering Kubernetes: Master the art of container management by using the power of Kubernetes. Packt Publishing Ltd.
- 4. Singh, M. P., & Huhns, M. N. (2005). Service-oriented computing: semantics, processes, agents. John Wiley & Sons.
- 5. Woods, D., & Mattern, T. (2006). Enterprise SOA: designing IT for business innovation. " O'Reilly Media, Inc.".
- 6. Kambhampaty, S. (2008). Service-oriented architecture for enterprise applications. John Wiley & Sons.
- 7. Hansen, M. D. (2007). SOA using java web services. Pearson Education.

Learning Assessment (Macro)

			End Semester					
Bloom	's Level of		The		Exam (50%)			
Cogn	itive Task	CL A-1 (5%)	Mid-1 (15%)	CLA-2 (5%)	CLA-3 (5%)	Practical (20%)	Th	Prac
Level 1	Remember Understand	50%	40%	40%	40%	50%	30%	40%
Level 2	Apply Analyse	50%	60%	60%	60%	50%	70%	60%
Level 3	Evaluate Create	-						
r	Fotal	100 %	100%	100%	100%	100%	100 %	100 %

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

		Linseaace						
Course Code	CSE 471	Course Category	Stream Elective (DE)	L-T-P-C	3	0	1	4
Pre-Requisite	ECE 211,	Co-Requisite		Progressive				
Course(s)	CSE 204	Course(s)		Course(s)				
Course		Professional /						
Offering	CSE	Licensing						
Department		Standards						

Embedded Systems

Course Objectives / Course Learning Rationales (CLRs)

Objective 1:To make student aware of the challenges in development of embedded systems.

Objective 2:To make a student capable of analysing the requirements for developing a new embedded system.

Objective 3:A student should be able to Evaluate and select appropriate processor, memory, sensor/actuators, etc. components as per the requirement of the embedded system.

Objective 4:To make a student aware of the role of an operating system in context of embedded system.

	At the end of the course the learner will be able to	Bloom 's Level	Expected Proficien cy Percentag e	Expected Attainmen t Percentage
Outcome 1	Describe the challenges in development of embedded systems.	2	90%	90%
Outcome 2	Analyse the requirements for developing a new embedded system.	4	80%	80%
Outcome 3	Evaluate appropriate processor, memory, sensor/actuators components as per the given requirement of an embedded system.	5	80%	80%
Outcome 4	Discuss the role of an operating system in context of an embedded system.	2	80%	80%

Course Outcomes / Course Learning Outcomes (CLOs)

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

-		
	CLOs	Program Learning Outcomes (PLO)

	En gi ne eri ng Kn ow led ge	Pr ob le m An aly sis	De sig n an d De vel op me nt	An aly sis , De sig n an d Re se arc h	M od er n To ol an d IC T Us ag e	So cie ty an d M ult icu ltu ral Sk ills	En vir on me nt an d Su sta ina bil ity	M or al, an d Et hic al A wa re ne ss	In di vi du al an d Te am wo rk Sk ills	Co m un ica tio n Sk ills	Pr oje ct M an ag em ent an d Fi na nc e	Se lf- Di rec ted an d Lif elo ng Le ar ni ng	PS O 1	PS O 2	PS O 3
Outcome 1	3	3	3	2	2				1	1	1	2	2	2	2
Outcome 2	3	3	3	3	3				3	2	3	3	3	3	3
Outcome 3	3	3	3	3	3				3	2	3	3	3	3	3
Outcome 4	3	3	3	3	3				2	2	2	3	3	3	3
Course Average	3	3	3	3	3				2	2	2	3	3	3	3

Course Unitization Plan- Theory

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
UNIT 1	Introduction to embedded system	9		
	Introduction to embedded system	2	1	1
	Typical Components of an embedded system	1	1,2,3	1
	Sensors and actuators (overview)	1	1,2.3	1
	Processor	1	1,2,3	1
	Memory, timers, LCD etc. components	2	1,2,3	1
	Interfacing	2	1,2,3	1
UNIT 2	Instruction set of processors	9		
	Overview of a processor architecture.	1	1,2,3	1
	Instruction set of typical family of a processor	2	1,2.3	1
	ARM instruction set	1	1,2,3	1
	PIC microcontrollers	1	1,2,3	1
	Digital Signal Processor (DSP)	1	1,2,3	1
	Co-processor (why it is required?)	1	1,2,3	1
	I/O interfacing	2	1,2.3	1
UNIT 3	Input output sub-systems	9		
	DMA, busy-wait, interrupt-driven	2	1,2,3	1
	Timers and counters	1	1,2.3	1

	Performance analysis Performance optimization	2 3	2,3 2,3	1 1
	~			1 1 1
UNIT 5	Operating System OS requirement in context of Embedded	2 8 2	2,3	2
	System Real time OS. Multi-rate system.	2 2	2,3,4 2,3,4	2
Total con	Real-time memory management.	2	2,3,4 2,3,4 45	2

Course Unitization Plan- Lab

S.	Experiment	Required	CLOs	Referenc
No.		Contact Hours	Addresse d	es Used
1	Introduction to Kiel Microcontroller Development Kit Software tool.	4	1	1
2	Interfacing of 8-bit ADC 0809 with 8051 Microcontroller.	2	2, 3	1
3	Interfacing of 8-bit DAC 0800 with 8051 Microcontroller.	2	2, 3	1
4	Implementation of Serial Communication by using 8051 serial ports.	2	1	1
5	Interfacing of individual LEDs and program them to blink after a fixed time interval.	2	2, 3	1
6	Interfacing of 16*2 LCD panel with 8051 Microcontroller.	2	2, 3	1
7	Interfacing of stepper motor with 8051 Microcontroller.	2	2, 3	1
8	Mini Project	14	1, 2, 3, 4	1
Total c	ontact hours		30	

Recommended Resources

- 3. Wolf, M. (2017) Computers as components: principles of embedded computing system design. Elsevier.
- 4. Mall, R. (2009) Real-time systems: theory and practice. Pearson Education India.

Other Resources

- 5. Kamal, R. (2020). Embedded Systems-SoC, IoT, AI and Real-Time Systems|. McGraw-Hill Education.
- 6. Vahid, F., & Givargis, T. D. (2001). Embedded system design: a unified hardware/software introduction. John Wiley & Sons.
- 7. Patel, M. K. (2014). The 8051 Microcontroller Based Embedded Systems. Tata McGraw-Hill Education.

Dlean	2 I aval of	Con	Continuous Learning Assessments (50%)					
Bloom's Level of Cognitive Task		CLA-1 (20%)	CLA-2 (20%)	CLA-3 (20%)	Mid-1 (40%)	Semester Exam (50%)		
Level 1	Remember	40%	40%	30%	40%	30%		
Level I	Understand	40%	40%	5070	+070	30%		
Level 2	Apply	40%	40%	40%	50%	50%		
Level 2	Analyse	40%	40%	40%	30%	30%		
Level 3	Evaluate	20%	20%	20% 30%	10%	20%		
Level 5	Create	20%	20%	30%	10%	20%		
	Total	100%	100%	100%	100%	100%		

Learning Assessment (Theory)

Learning Assessment (Lab)

Bloom's Level of Cognitive Task		Continuous Learning	Continuous Learning Assessments (50%)		
		Lab Performance (30%)Project Viva (20%)		End Semester Exam (50%)	
Level 1	Remember	20%	50%	20%	
Level I	Understand	2070	3070	2070	
Level 2	Apply	50%	30%	30%	
Level 2	Analyse	5078	3070	3070	
Level 3	Evaluate	30%	20%	50%	
Create		30%	20%	30%	
	Total	100%	100%	100%	

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

	101 Sysu	em Design and Imp	Jementation	L				
Course Code	CSE 472	Course Category	Stream Elective (SE)	L-T-P-C	3	0	1	4
Pre-Requisite Course(s)	Computer Networks, Programming languages: C, C++, Python and/or Java (one or more)	Co-Requisite Course(s)		Progressiv e Course(s)				
Course		Professional /		·	•			
Offering	CSE	Licensing						
Department		Standards						

IoT System Design and Implementation

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Explain the terms sensors, actuators, devices and gateways.

Objective 2: Describe the functionalities of 6LowPAN, TLS and CoAP protocols

Objective 3: List the challenges involved while implementing different levels of IoT security protocols.

Objective 4: Determine the various performance metrics of machine learning models used in IoT use cases.

	At the end of the course the learner will be	Bloom's	Expected	Expected
	able to	Level	Proficien	Attainme
			cy	nt
			Percenta	Percenta
			ge	ge
Outcome	Build a simple IoT system to monitor	6	70	75
1	temperature, humidity, pressure etc., for the			
	given application scenario.			
Outcome	Choose the right connectivity technologies of	4	70	75
2	IoT platforms to deploy in given applications			
	use case.			
Outcome	Explain the challenges involved with	4	70	75
3	implementing appropriate levels of security in			
	IoT.			
Outcome	Evaluate the performance of various analytical	5	70	75
4	and machine learning models through the use			
	of various performance metrics			

Course Outcomes / Course Learning Outcomes (CLOs)

Course Articulation Matrix (CLO) to (PLO)

					Prog	ram L	earni	ng O	utcor	nes (l	PLO)				
CLOs	Engineering	Problem Analysis	Design and	Analysis, Design	Modern Tool and	Society and	Environment and	Moral, and Ethical	Individual and	Communication	Project Management	Self-Directed and	PSO 1	PSO 2	PSO 3
Outcome 1	2		3		2								2		1
Outcome 2	2	1			3								1	1	
Outcome 3	3												2		1
Outcome 4	2	1	3	3	2								1		1
Course	2	1	3	1	2								2	1	1
Average															

Course Unitization Plan - Theory

UNIT	Unit Name	Required	CLOs	Reference
		Contact	Addresse	s Used
		Hours	d	
UNIT	Introduction, applications, percussors, and IoT	9		*
1	devices			
1	Introduction to IoT, Physical Design of IoT	1	CLO1	1
2	Logical Design of IoT, IoT Enabling	3	CLO1	1
	Technologies.			
3	IoT Levels & Deployment Templates, applications	1	CLO1	1
4	Predecessor of IoT: WSN, M2M and CPS	1	CLO1	1,2
5	Introduction to Arduino and Raspberry pi	1	CLO1	1,3
6	integrating sensors and actuators with Arduino and	2	CLO1	1,3
	Raspberry Pi. (1 hour)			
UNIT	Sensing & Actuating, and IoT Data Link Layer	9		*
2				
7	Sensors, sensor characteristics, sensorial	1	CLO1	3
	deviations, sensing types, sensing considerations,			
8	Actuators, actuators types and actuators	1	CLO1	3
	characteristics.			
9	IEEE 802.15	1	CLO2	3,4
10	Wireless HART	1	CLO2	3,4
11	RFID, NFC	1	CLO2	3,4
12	Zigbee Smart Energy, Z-Wave	1	CLO2	3,4
13	Bluetooth Low Energy	1	CLO2	3,4
14	DASH7	1	CLO2	3,4
15	LoRA	1	CLO2	3,4
UNIT	Network Layer Protocols and Associated	9		*
3	Technologies			
16	6LoWPAN	1	CLO2	2,4

17	6TiSCH	1	CLO2	Andhra Pradesh
			CLO2 CLO2	2,4
18	RPL	1		2
19	CORPL	1	CLO2	
20	CARP and CCN	1	CLO2	2
21	SDN and NFV for IoT	1	CLO1,	2
			CLO2	
22	Cloud Model and Implementations.	1	CLO1,	2
			CLO2	
23	Sensor as cloud.	1	CLO1,	2
			CLO2	
24	Fog nodes and fog node deployment model, fog	1	CLO1,	2
	computing architecture.		CLO2	
UNIT	Transport Layer & Session Layer Protocols	9		*
4				
24	MPTCP	1	CLO2	1,2,3
25	DCCP	1	CLO2	1,2,3
26	TLS	1	CLO2	1,2,3
27	DTLS	1	CLO2	1,2,3
28	CoAP	1	CLO2	1,2,3
29	XMPP	1	CLO2	1,2,3
30	AMQP	1	CLO2	1,2,3
31	MQTT	1	CLO2	1,2,3
32	MQTTSN	1	CLO2	1,2,3
UNIT	Security in IoT & Variants of IoT	9		*
5				
33	Security and Privacy issues in IoT protocols e.g.,	1	CLO3	*
	MQTT and CoAP			
34	Introduction to Internet of Things by Cisco	2	CLO2	5
	NetAcademy – Hand on (2 hours)	_		-
35	Attack Surfaces and Attack Vectors in IoT	1	CLO3	
36	Industrial IoT (IIoT): Use cases in smart/digital	1	CL01,	
50	manufacturing.	1	CLO3	
37	Architecture: Edge Tier, Platform Tier, Enterprise	1	CL03	
57	Tier	1	CLOI	
38	Cyber security: Attack surfaces and attack vectors	1	CLO3	
50	in IIoT	1		
39	Industry 4.0 and Introduction to Industry 5.0	1	CLO1	
40	Data Analytics and Machine Learning for IoT	1	CL01 CL04	
40	applications.	1		
Total	applications.	15		
Total		45		

Course Unitization Plan - Lab

Session	Description of the Experiments	Required	CLOs	References
		Contact	Addressed	Used

			10 m m m m m m m m m m m m m m m m m m m	Andhra Prac
Week1:	 Introduction to lab and Install Arduino IDE and study the tool thoroughly. Write program using Arduino IDE to Blink an LED Hardware Requirements: 1x Breadboard 1x Arduino Uno R3 1x RGB LED 1x 330Ω Resistor 	2	1,2	1, 2, 3
Week 2:	 Write program using Arduino IDE to Blinking the RGB LED: With a simple modification of the breadboard, we could attach the LED to an output pin of the Arduino. Move the red jumper wire from the Arduino 5V connector to D13 Hardware Requirements: 1x Breadboard 1x Arduino Uno R3 1x RGB LED 1x 330Ω Resistor 2x Jumper Wires 	2	1, 2	1, 2, 3.
Week 3:	 Write a program using Arduino IDE and Arduino board to measure the temperature and humidity of the room using the temperature- humidity sensor. Display the results on the serial monitor. 1. System -1 2. Arduino Uno Board -1 3. Arduino dumping cable -1 4. Temperature-Humidity sensor 	2	1, 2	1, 2, 3
Week 4:	 Write a program using Arduino IDE and Arduino board to measure the intensity of the room. Display the results on the serial monitor. Hardware Required. 1. System -1 2. Arduino Uno Board -1 3. Arduino dumping cable -1 4. LDR-1 5. Resistor 1KΩ -1 7. Bread Board-1 8. Connecting Wires -Required 	2	1, 2	1, 2, 3
Week 5:	Write a program to Study and Configure Raspberry Pi.	2	1,2	1, 2, 3

Week 6:	WAP to LED blink using Raspberry	2	1, 2	1, 2, 3
	Pi.		,	
	Hardware Requirements:			
	1x Breadboard			
	1x Raspberry Pi			
	1x RGB LED			
	1x 3300 Resistor			
Week 7:	Study and Implement Zigbee Protocol using	2	1, 2	1, 2, 3
	Raspberry Pi or Arduino			
Week 8:	Study and implement 6LoWPAN Border	1	1, 1	1, 2, 3
	Router Implementation for IoT Devices on			
	Raspberry Pi or Arduino			
Week 9:	Study and implement DTLS protocol for IoT	1,2	1, 2	1, 2, 3
	devices using Raspberry Pi or Arduino			
Week 10:	Study and implement CoAP protocol for IoT	2	1, 2	1, 2, 3
	devices using Raspberry Pi or Arduino			
Week 11:	Study and implement RPL protocol for IoT	1	1, 1	1, 2, 3
	devices using Raspberry Pi or Arduino			
Week 12:	Study and implement MQTT protocol for IoT	1,2	1,2, 3	1, 2, 3
	devices using Raspberry Pi or Arduino			
Week 14	Study and implement AMQP protocol for IoT	2	1, 2, 3,4	1, 2, 3
	devices using Raspberry Pi or Arduino			
Week 15	Study LORA protocol using Raspberry Pi or	1	1, 2,3,4	1, 2, 3
	Arduino			

Recommended Resources

- 1. Bahga, A., & Madisetti, V. (2014). Internet of Things: A hands-on approach. Vpt.
- 2. Misra, S., Mukherjee, A., & Roy, A. (2021). Introduction to IoT. Cambridge University Press.
- 3. Dhondge, K. (2021). Lifecycle IoT Security for Engineers. Artech House.

Other Resources

- 1. Waher, P. (2015). Learning internet of things. Packt publishing.
- 2. http://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html
- 3. https://www.netacad.com/courses/iot/introduction-iot
- 4. Industry IoT Consortium: <u>https://www.iiconsortium.org/</u>
- 5. Select papers in reputed Journals and Conferences

Learning Assessment

Question Difficulty	Bloom's Level of Cognitive Task		Continuous Learning Assessments (50%)									C				End Semeste r Exam (50%)
		Mid -1 (40 %)	CLA- 1 (10%	CLA-2 (10%)	Lab Record (10%)	Project (20%)	Viva (10%)									
		70))													
Level 1	Remember															
	Understand															
Level 2	Apply Analyse	50	50	50	50	50	50	50								
Level 3	Evaluate Create	50	50	50	50	50	50	50								
Total		100 %	100%	100%	100%	100%	100%	100%								

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Name: IoT Data Analytics

Course Code	CSE 473	Course Category	Stream Elective (SE)	L-T-P-C	3	0	1	4
Pre- Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** Provide an overview of an exciting growing field of big data analytics for IoT data.
- **Objective 2:** Introduce the tools required to manage and analyze big data like Hadoop, MapReduce in IoT Networks.
- **Objective 3:** Apply big data processing and mining techniques for the IoT data traffic.
- **Objective 4:** Understand how to perform cluster analysis using machine Learning Tools for the IoT networks.

	comes / Course Learning Outcomes (CLOs)	1		1
	At the end of the course the learner will be able to	Bloom 's Level	Expecte d Proficien cy Percenta ge	Expected Attainme nt Percenta ge
Outcome 1	Understand the key issues in big data management and its associated applications in intelligent business and scientific computing	2	70 %	65%
Outcome 2	Acquire fundamental enabling techniques and scalable algorithms like Hadoop, Map Reduce and NO SQL in IoT big data analytics	3	70 %	65%
Outcome 3	Interpret business models and scientific computing paradigms and apply software tools for IoT big data analytics.	3	70 %	65%
Outcome 4	Achieve adequate perspectives of IoT big data analytics in various applications like recommender systems, social media applications	3	70 %	65%
Outcome 5	Design an agglomerative hierarchical clustering technique and to apply to apply clustering to real world scenarios.	4	70 %	65%

Course Outcomes / Course Learning Outcomes (CLOs)

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

		Program Learning Outcomes (PLO)													
CLOs	En gi ne eri ng Kn ow led ge	Pr ob le m An aly sis	De sig n an d De vel op me nt	An aly sis , De sig n an d Re se arc h	M od er n To ol an d IC T Us ag e	So cie ty an d M ult icu ltu ral Sk ills	En vir on me nt an d Su sta ina bil ity	M or al, an d Et hic al A wa re ne ss	In di vi du al an d Te am wo rk Sk ills	Co m un ica tio n Sk ills	Pr oje ct M an ag em ent an d Fi na nc e	Se lf- Di rec ted an d Lif e Lo ng Le ar ni ng	PS O 1	PS O 2	PS O 3
Outcome 1	2	3	3	3	2								3	2	
Outcome 2	2	2	3	3	2								2	2	
Outcome 3	2	3	3	2	2								2	2	
Outcome 4	3	3	3	3	2								2	3	
Outcome 5	2	3	3	3	2								2	2	
Course Average	2	3	3	3	2								2	2	

Course Unitization Plan

Unit No.	Unit Name	Requi red Conta ct Hours	CLOs Addres sed	Refere nces Used
Unit 1	Introduction	9		
	Introduction to IoT Networks	1	1	1,2
	Overview of IoT and its applications	1	1	1
	Importance of data analytics in IoT	1	1	1,2
	IoT data sources and types	1	1	1
	Introduction to Big Data Analytics	1	1	1
	Challenges and opportunities in IoT data analytics	1	1	1
	Tools and technologies for IoT data collection	1	1	1,2
	Applications of Big Data Analytics	1	1	1,2
	Integration of IoT with Data Analytics	1	1	1,2
Unit 2	Data Analysis	9		
	Data Preprocessing for IoT Data Analytics	1	2	1,2
	Overview of the Data cleaning	1	2	1,2
	Overview of quality assessment			
	Data transformation and normalization	1	2	1,2
	Introduction to IoT datasets	1	2	1,2
	Overview of different data sets available for IoT data	1	2	1,2
	Handling missing data in IoT datasets	1	2	1,2
	Introduction to data preprocessing techniques	1	2	1,2
	Time series data preprocessing techniques	1	2	1,2
Unit 3	Descriptive Analytics for the IoT Data	9		
	Exploratory data analysis (EDA) for IoT data	2	3	1,2
	Statistical summary and visualization of IoT data	2	3	1,2
	Identifying patterns and anomalies	2	3	1,2
	Real-time monitoring and dashboard creation	2	3	1,2
	Case studies on descriptive analytics in IoT applications	1	3	1,2
Unit 4	Predictive Analytics in IoT Networks	7		
	Introduction to predictive modelling in IoT	1	4	1
	Machine learning algorithms for IoT data prediction	2	4	1
	Model evaluation and selection	2	4	1
	Time series forecasting for IoT applications	1	4	1
	Anomaly detection using machine learning	1	4	1
Unit 5	Advanced Analytics and Visualization in IoT	11		
	Clustering and classification in IoT data	1	5	1

			UNIVER
Predictive maintenance and fault detection	2	5	1
Overview of Edge computing	2	5	1
IoT data analytics in edge computing	2	5	1
Overview of Data Visualization	2	5	1
Visualizing IoT data for decision-making	2	5	1
Total Contact Hours		45	

Course Unitization Plan - Lab

Exp No.	Experiment Name	Requi red Conta ct Hours	CLOs Addres sed	Refere nces Used
	Lab Experiment 1: Perform setting up and	2	3	2
	Installing Hadoop in its two operating modes			
	Lab Experiment 2: Overview of Cooja Simulator	2	3	2
	for IoT data	_	C	_
	Lab Experiment 3: Use web based tools to monitor	2	3	2
	your Hadoop setup			
	Lab Experiment 4 : Implement the file	2	3	2
	management tasks in Hadoop.			
	Lab Experiment 5: Create and test an Apache	2	3	2
	Hadoop			
	cluster.			
	Lab Experiment 6: Basic Word Count Map	2	3	2
	Reduce			
	program.	2	2	2
	Lab Experiment 7: Performing a MapReduce Job for word	2	3	2
	Search			
	Lab Experiment 8: HiveQL Queries	2	3	2
	Lab Experiment 0: InvegE Queries	2	3	2
	weather data (Weather sensors collecting data every hour at many locations across the globe gather large volume of log data)			2
	Lab Experiment 10: Install and Run Hive.	2	3	2
	Lab Experiment 11: Data analytics using Apache	2	3	2
	Spark on			
	Amazon food dataset.			
	Lab Experiment 12: Install, Deploy & configure	2	3	2
	Apache			
	Spark Cluster	2	2	2
	Lab Experiment 13: Apache spark applications	2	3	2
	using Scala			

Lab Experiment 14: Write Pig Latin scripts to sort,	2	3	2
group, join, project, and filter your data.			
Lab Experiment 15: Write a Pig Latin scripts for	2	3	2
finding			
TF-IDF value for book dataset (A corpus of			
eBooks available at: Project Gutenberg)			
Total Contact Hours		30	

- 1. Chris Eaton, Dirk deroos et al., (2012). "Understanding Big data", McGraw Hill.
- 2. Bernd Scholz-Reiter, Florian Michahelles, "Architecting the Internet of Things", ISBN 978-3-642-19156-5 e-ISBN 978-3-642-19157-2, Springer

Other Resources

- 1. Stackowiak, R., Licht, A., Mantha, V., Nagode, L., (2015), "Big Data and The Internet of Things Enterprise Information Architecture for A New Age", Apress.
- 2. Dr. John Bates (2015), "Thingalytics Smart Big Data Analytics for the Internet of Things", john Bates.

Learning Assessment (Theory)

	i's Level of itive Task	Cont	End Semester			
		CLA-1 (10%)	Mid-1 (10%)	CLA-2 (5%)	CLA-3 (5%)	Exam (30%)
Level 1	Remember	70%	60%	30%	30%	60%
	Understand					
Level 2	Apply	30%	40%	70%	70%	40%
	Analyse					
Level 3	Evaluate					
	Create					
,	Total	100%	100%	100%	100%	100%

Learning Assessment (Lab)

	n's Level	Continuous	Continuous Learning Assessments (20%)					
	ognitive Fask	Lab Record (5%)	— Exam (20%)					
Level	Rememb	50%	50%	50%				
1	er							
	Understa							
	nd							
Level	Apply	50%	50%	50%				
2	Analyse							
Level	Evaluate							
3	Create							
r	Fotal	100%	100%	100%				

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

	1	loi Security	and Diocke	114111				
Course Code	e CSE 474 Course Course Elective (SE)		Elective	L-T-P-C	3	0	1	4
Pre-Requisite Course(s)	IoT System Design and Protocols	ES		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

IoT Security and Blockchain

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** Understand the foundational concepts of IoT and the unique security challenges associated with interconnected devices.
- **Objective 2:** Explore the architecture of IoT systems and understand the security implications
- Objective 3: Identify and analyze the potential security threats and vulnerabilities in IoT
- **Objective 4:** To navigate the complex landscape of IoT security and contribute to the development of secure and resilient IoT solutions in various industries.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	To explain the architecture of IoT systems, including the roles of devices, communication protocols, and cloud platforms.	2	75 %	70%
Outcome 2	Able to acquire the practical competency through emerging technologies and open- source platforms related to the areas of Cyber Security, IoT and Block Chain	3	70 %	65%
Outcome 3	To implement authentication and authorization mechanisms to control access to IoT devices and networks, ensuring secure interactions.	3	70 %	65%

Outcome 4	To select and implement secure communication protocols suitable for IoT devices, ensuring the secure exchange of data.	3	70 %	65%
Outcome 5	To develop and implement IoT security policies and blockchains considering regulatory compliance and organizational requirements.	4	70 %	65%

Program Learning Outcomes (PLO)															
CLOs	Engineerin g	Problem	Design and	Analysis,	Modern	Society and	Environme	Moral, and	Individual	Communic	Project	Self-	PSO 1	PSO 2	PSO 3
Outcome 1	3	3	2	1									2	2	3
Outcome 2	3	3	2	1									3	2	3
Outcome 3	3	3	2	2									3	2	3
Outcome 4	3	3	2	2									3	2	3
Outcome 5	3	3	2	2								2	3	2	2
Course Average	3	3	2	2								2	3	2	3

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
UNIT I	INTRODUCTION-THREATS AND ATTACKS	14	1	1
	Internet of Things (IoT) as Interconnection of Threats (IoT)	2	1	1,2
	Cyber Security versus Cyber-Physical IoT Security	2	1	1,2
	IoT deployment architecture,	2	1	1,2
	Security challenges in IoT: Privacy, Data Integrity, Authenticati Authentication, Threats, Vulnerabilities	1	1	1,2

				Andhra Pra
	Evolution of cyber-physical attacks, IoT security architecture	1	1	1,2
	IoT use cases: Smart city and Autonomous transportation, Healthcare and Pharmaceutical,	2	1	1,2
	Lab Experiment 1: The definition of the Internet of Things, main assumptions and perspectives. Platform for IoT devices Device architectures.	2	1	1,2
	Lab Experiment 2: Communication protocols for IoT Service oriented protocols (COAP).	2	1	1,2
UNIT II	PRIVACY PRESERVATIONS	15		
	Privacy Preservation Data Dissemination. Privacy Preservation for IoT Used in Smart Buildings.	1	1	1,2
	Social Features for Location Privacy Enhancement in Internet of Vehicles.	1	1	1,2
	Lightweight and Robust Schemes for Privacy Protection in Key Personal I IoT Applications: Mobile WBSN and Participatory Sensing.	1	1	1,2
	Lab Experiment 3 Communication protocols based on the exchange of messages (MQTT). Service discovery protocols.	2	1, 2	1,2
	Lab Experiment 4: Study of different types of vulnerabilities for hacking a websites / Web Applications.	2	1, 2	1,2
	Lab Experiment 5: Architecture of Amazon AWS IoT	2	1, 2	1,2
UNIT III	TRUST AND AUTHENTICATION	19		
	Trust and Trust Models for the IoT. Self-Organizing	1	2,3	1,2
	"Things" and Their Software Representatives.	1	2,3	1,2
	Preventing Unauthorized Access to Sensor Data. Authentication in IoT.	2	2,3	1,2
	Lab Experiment 6: Master the use of AWS IoT managing IoT devices	2	2,3	1,2
	Lab Experiment 7: Master programming AWS IoT	2	2,3	1,2
	Lab Experiment 8: Applications Smart Grid. Home Automation	2	2,3	1,2
UNIT IV	IoT DATA SECURITY	14		

	Computational Security for the IoT and Beyond.	1	3,4	1,2
	Privacy-Preserving Time Series Data Aggregation for Internet of Things.	2	3,4	1,2
	Secure Path Generation Scheme for Real-Time Green Internet of Things.	2	3,4	1,2
	Security Protocols for IoT Access Networks	2	3,4	1,2
	Lab Experiment 9: Study of System threat Attacks DoS	2	3, 4	1,2,3
	Lab Experiment 10: Connecting to the Internet (eg. the device showing the current weather forecast)	2	3, 4	1,2,3
	Lab Experiment 11: Machine-to-machine communication (broadcast communication protocols)	2	3, 4	1,2,3
	Lab Experiment 12: Machine to Machine Communications (MQTT protocol)	2	3,4	1,2,3
UNIT V	BLOCKCHAIN	13		
	Introduction, Applications, Ethereum, Ethereum Networks, Infura, Solidity	2	5	2, 3, 4
	Smart Contracts, Sample code for Smart Contracts, How to deploy smart Contracts, Use cases	2	5	2, 3, 4
	Hyperledger Fabrics, How to deploy Hyper ledger Fabrics, Use cases	2	5	2, 3, 4
	Lab Experiment 13: Basic Ehereum Transactions, Implementing a Dapp using Solidity	2	5	2, 3, 4
	Lab Experiment 14: Implement Fabric Smart Contracts	2	5	2, 3, 4
	Lab Experiment 15: Implementation of Hyperledger Fabrics	2	5	2, 3, 4
	Total Hours		75	

1. David Etter, (2016). "IoT Security: Practical guide book "Create Space, 1st Edition.

2. Drew Van Duren, Brian Russell, (2016). "Practical Internet of Things Security", Packt, 1st Edition.

3. Sean Smith, (2017). "The Internet of Risky Things", O'Reilly Media, 1st Edition.

4. Bhattacharjee, (2018). Practical Industrial Internet of Things security, Packt Publishing.

5. Imran Bashir, Packt Publishing, 2020. Mastering Blockchain: A deep dive into distributed ledgers, consensus protocols, smart contracts, DApps, cryptocurrencies, Ethereum, and more, 3rd Edition.

		Conti	nuous L	earning	Assessme	ents (50%)		emester
Bloom's Level of			Theory	v (40%)		Exam (50%)		
Cogi	nitive Task	CLA-1 (10%)	Mid-1 (10%)	CLA- 2 (10%)	CLA-3 (10%)	Practical (10%)	Th	Prac
Loval 1	Remember	700/	600/	200/	200/	500/	500/	500/
Level 1	Understand	70%	60%	30%	30%	50%	50%	50%
L aval 2	Apply	200/	400/	700/	700/	500/	500/	500/
Level 2	Analyse	30%	40%	70%	70%	50%	50%	50%
Loval 2	Evaluate							
Level 3 Create								
	Total	100%	100%	100%	100%	100%	100%	100%

TECHNICAL ELECTIVES

Human Computer Interaction

Course Code	CSE 421	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3
Pre-Requisite Course(s)	CSE 101 CSE 236	Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** Introduce the capabilities of both humans and computers through human information processing.
- **Objective 2:**Gain knowledge of typical HCI models, styles and various historic HCI paradigms.
- **Objective 3:**Understand interactive design process and universal design principles to designing HCI systems.
- **Objective 4:**Comprehend HCI design principles, standards and guidelines.
- **Objective 5:**Understand user models, user support, socio-organizational issues and stakeholder requirements of HCI systems.
- **Objective 6:**Familiarize with tasks and dialogues of relevant HCI systems based on task analysis and dialogue design.

	At the end of the course the learner will be able to	Bloom' s Level	Expected Proficien cy Percenta ge	Expected Attainme nt Percentag e
Outcome 1	Identify the user requirements and challenges of HCI	2	70%	65%
Outcome 2	Apply theories and principles to design and model new HCI interface concepts	3	75%	65%
Outcome 3	Infer design patterns of HCI interfaces for mobile applications	2	70%	65%
Outcome 4	Develop graphical design interfaces for web applications based on design parameters	3	70%	60%

				/	Prog	ram I	Learn	ing C) utco	mes (PLO)			
											Pr	Sel	PS	PS	PS
				An	Μ	So	En	Μ	In		oje	f-	0	0	0
			De	aly	od	cie	vir	ora	div		ct	Di	1	2	3
	En	-	sig	sis	ern	ty	on	1,	idu	Co	Μ	rec			
	gin	Pr	n	, D	То	an	me	an	al	m	an	ted			
CLOs	eer	obl	an d	De	ol	d M	nt	d Et	an d	mu	ag	an d			
CLUS	ing Kn	em An	u De	sig n	an d	M ult	an d	Et hic	u Te	nic ati	em ent	d Lif			
	OW	aly	vel	an	IC IC	icu	Su	al	am	on	an	e			
	led	sis	op	d	T	ltu	sta	A	wo	Sk	d	Lo			
	ge		me	Re	Us	ral	ina	wa	rk	ills	Fi	ng			
	U		nt	sea	ag	Sk	bil	ren	Sk		na	Le			
				rch	e	ills	ity	ess	ills		nc	arn			
											e	ing			
Outcome 1	1	2	2	2	2								2	2	
Outcome 2	2	2	3	2	3								3	2	
Outcome 3	2	3	3	2	2								2	3	
Outcome 4	2	2	3	3	3								2	3	
Course	2	2	3	2	3								2	3	
Average	_	-	č	_	č								_	,	

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
UNIT 1	Foundations Of HCI	9		
	The Human: I/O channels and Memory	1	1	1
	Reasoning and problem solving	1	1	1
	The computer: Devices and Memory	1	1	1
	Processing and networks	1	1	1
	Interaction: Models	1	1	1
	Interaction: Frameworks	1	1	1
	Ergonomics	1	1	1
	Interaction: Styles and Elements	1	1	1
	Interactivity and Paradigms	1	1	1
UNIT 2	Design and Software Process	9		
	Interactive design basics and process	1	1,2	1

	Scenarios and Navigation	1	1,2	1
	Screen design	1	1,2	1
	Iteration and prototyping	1	1,2	1
	HCI in software process and life cycle	1	1,2	1
	Usability engineering	1	1,2	1
	Prototyping in practice, design rationale	1	1,2	1
	Design rules, principles, standards, and guidelines	1	1,2	1
	Evaluation Techniques, Universal Design.	1	1,2	1
UNIT 3	Models and Theories	8		
	Cognitive models	1	1,2	1
	Socio-Organizational issues and stake holder requirements	2	1,2	1
	Communication and collaboration Models	2	1,2	1
	Hypertext	1	1,2	1
	Multimedia	1	1,2	1
	WWW	1	1,2	1
UNIT 4	Mobile HCI	10		
	Mobile Ecosystem: Platforms	1	3	1,2
	Mobile Ecosystem: Application frameworks	2	3	1,2
	Types of Mobile Applications	1	3	1,2
	Widgets and Applications	1	3	1,2
	Games	1	3	1,2
	Mobile Information Architecture	1	3	1,2
	Mobile 2.0	1	3	1,2
	Mobile Design: Elements of Mobile Design	1	3	1,2
	Mobile Design: Tools	1	3	1,2
UNIT 5	WEB Interface Design	9		
	Designing Web Interfaces	2	4	1,3
	Drag and drop	1	4	1,3

			470
Direct Selection	1	4	1,3
Contextual Tools	1	4	1,3
Overlays	1	4	1,3
Inlays and Virtual Pages	1	4	1,3
Process Flow	1	4	1,3
Case Studies.	1	4	1,3
Total Contact Hours		45	

- 1. Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale (2004). Human Computer Interaction. Pearson Education.
- 2. Brian Fling (2009). Mobile Design and Development. O'Reilly Media Inc.
- 3. Bill Scott and Theresa Neil (2009). Designing Web Interfaces. O'Reilly Media Inc.

Other Resources

1. Dr. Samit Bhattacharya and Dr. Pradeep G. Yammiyavar, NPTEL Lecture serias. http://nptel.ac.in/courses/106103115/

Learning	g Assessme	nı									
			Conti	nuous I	Learnin	E	nd				
Bloom's Level of Cognitive Task		CLA-1 (10%)			Mid-1 (15%)		CLA-2 (10%)		A-3 5%)	Semester Exam (50%)	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level	Remem ber	70%		65%		60%		50%		40%	
1	Underst and	7070		0370		00%		30%		40%	
Level 2	Apply Analyze	30%		35%		40%		50%		60%	
Level 3	Evaluat e Create										
T	otal	100 %		100 %		100 %		100 %		100 %	

Advanced Computer Architecture

		<u> </u>						
Course Code	CSE422	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3
Pre-Requisite Course(s)	CSE 235	Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Learn how to measure performance of a computing system.

Objective 2: Gain knowledge of several optimization in advanced computer architectures.

Objective 3: Understand several advanced memory optimization techniques.

Objective 4: Familiarize with the architectural issues of a computing systems (devices).

	At the end of the course the learner will be	Bloom'	Expected	Expected
	able to	s Level	Proficien	Attainme
			су	nt
			Percenta	Percentag
			ge	e
Outcome	Explain processor performance improvement	2	85%	75%
1	using instruction level parallelism			
Outcome	Demonstrate the optimization techniques for	3	70%	70%
2	improving performance of advanced computer			
	architectures			
Outcome	Illustrate advanced memory optimization	2	70%	65%
3	techniques			
Outcome	Identify the architectural issues in computing	2	65%	65%
4	systems (devices).			

Course Articulation		141113			Progr										
CLOs	EngineeringKnowledge	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S = C = C = C = C = C = C = C = C = C =	E n v i r o n m e n t a n d S u s t a i n d S u s t a i i r o n m e n t a b i i r o n t y	M o r a l , a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k i l s	C o m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a n c e	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f e c t e a r n g L e a r n g	P S O 1	P S O 2	P S O 3
Outcome 1	2	2	1	1	1								1	1	1
Outcome 2	3	3	3	3	3						2	3	3	3	3
Outcome 3	3	3	3	3	3						2	3	3	3	3
Outcome 4	3	3	3	3	3						2	3	3	3	3
Course	3	3	3	3	3						2	3	3	3	3
Average															

Course Unitization	n Plan
---------------------------	--------

Unit	Unit Name	Required	CLOs	Referenc
No.		Contact Hours	Addresse d	es Used
UNIT 1	Instruction Level Parallelism	7		
	ILP – Concepts and challenges	2	1	1, 3
	Hardware and software approaches	1	1	1, 3
	Dynamic scheduling	1	1	1, 3
	Speculation	1	1	1
	Compiler techniques for exposing ILP	1	1	1
	Branch prediction.	1	1	1
UNIT 2	Multiple Issue Processors	10		
	VLIW & EPIC	1	2	1, 3
	Advanced compiler support	1	2	1, 3
	Hardware support for exposing parallelism	1	2	1, 3
	Hardware versus software speculation mechanisms	2	2	1, 3
	IA 64 and Itanium processors	3	2	1, 3
	Limits on ILP	2	2	1, 3
UNIT 3	Multiprocessors and Thread Level Parallelism	9		
	Symmetric and distributed shared memory architectures	2	2	1, 3, 4
	Performance issues	2	2	1, 3, 4
	Synchronization	2	2	1, 3, 4
	Models of memory consistency	2	2	1, 3, 4
	Introduction to Multithreading	1	2	1, 2
UNIT 4	Memory and I/O	10		
	Cache performance	1	3	1
	Reducing cache miss penalty and miss rate	1	3	1
	Reducing hit time	1	3	1
	Main memory and performance	1	3	1
	Memory technology	1	3	1
	Types of storage devices	1	3	1
	Buses – RAID – Reliability	1	3	1
	Availability and dependability	1	3	1
	I/O performance measures	1	3	1
	Designing an I/O system	1	3	1
UNIT 5	Multi-core Architectures	9		
	Software and hardware multithreading	2	4	1, 5
	SMT and CMP architectures	1	4	1, 5

Design issues	1	4	1, 5
Case studies	1	4	1, 5
Intel Multi-core architecture	1	4	1, 5
SUN CMP architecture	1	4	1, 5
Heterogeneous multi-core processors	1	4	1, 5
Case study: IBM Cell Processor	1	4	1, 5
Total Contact Hours	45		

1. Hennessy, John L., and David A. Patterson (2017). Computer architecture: a quantitative approach. 6th edition Morgan Kaufman.

Other Resources

- 2. Shen, John Paul, and Mikko H. Lipasti (2013). Modern processor design: fundamentals of superscalar processors. Waveland Press
- 3. Dally, William James, and Brian Patrick Towles (2004). Principles and practices of interconnection networks. Elsevier.
- 4. Hwang, Kai, and Naresh Jotwani (2016). Advanced computer architecture. McGraw-Hill Education.
- 5. Dezsosima, Terence Fountain, Peter Kacsuk (1997). Advanced Computer Architectures-A Design Space Approach. Pearson Education India.
- 6. Brian Tuomanen (2018). Hands-On GPU Programming with Python and CUDA: Explore high-performance parallel computing with CUDA. First edition.
- 7. David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors: A Hands-on Approach. 3rd edition. Morgan Kaufman.

			Con	tinuous	Learnii	ng Asses	sments	(50%)		End	
Bloom's Level of Cognitive Task		CLA-1 (10%)		Mid-1	Mid-1 (15%)		CLA-2 (10%)		A-3 1%)	Semester Exam (50%	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
	Remember	100		70%		80%		80%		70%	
Level 1		%									
	Understand										
Level 2	Apply			30%		20%		20%		30%	
Level 2	Analyse										
Level 3	Evaluate										
Level 5	Create										
Total		100		100%		100%		100%		100%	
		%									

		Haturai Lang	uage 1 rocessing					
Course Code	CSE 423	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Natural Language Processing

Course Objectives / Course Learning Rationales (CLRs)

Objective 1. Learn the basics of natural language processing and understand various steps in it.

Objective 2. To introduce the fundamentals of language processing from the algorithmic viewpoint.

Objective 3. To discuss various issues that make natural language processing a hard task.

Objective 4. To discuss some well-known applications of natural language processing

	At the end of the course the learner will be able to	Bloom' s Level	Expected Proficien cy Percenta ge	Expected Attainme nt Percentag e
Outcome 1	Recall the fundamental concepts of natural language processing.	1	70%	68%
Outcome 2	Demonstrate algorithms for word level and syntactic analysis of textual data.	2	70%	65%
Outcome 3	Develop systems for language processing and information related tasks using text processing.	3	70%	60%
Outcome 4	Implement systems using natural language generation algorithms and machine translation techniques based on user queries	4	70%	65%

					,	am L			0				,		
CLOs	En gi ne eri ng K no wl ed ge	Pr ob le m A na lys is	De sig n an d De ve lo p m en t	A na lys is, De sig n an d Re se ar ch	M od er n To ol an d IC T Us ag e	am L So cie ty an d M ult ic ult ur al Sk ill s	En vir on m en t an d Su sta in ab ilit y	M or al, an d Et hi cal A wa re ne ss	In di vi du al an d Te a m w or k Sk ill s	Co m un ica tio n Sk ill s	PLO Pr oj ect M an ag e m en t an d Fi na nc e	Se lf- Di re cte d an d Li fe Lo ng Le ar ni ng	PS O 1	PS O 2	PS O 3
Outcome 1	2	3	3	3	2							8	3	2	2
Outcome 2	2	2	3	3	2								2	2	2
Outcome 3	2	3	3	2	2								2	2	2
Outcome 4	3	3	3	3	2								2	3	2
Course Average	2	3	3	3	2								2	2	2

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
UNIT 1	Introduction	11		
	Natural Language Processing tasks in syntax, semantics, and pragmatics – Issues – Applications	2	1	1
	The role of machine learning	1	1	1
	Probability Basics	2	1	1
	Information theory	2	1	1
	N-gram Language Models	2	1,2	1
	Estimating parameters and smoothing	1	1,2	1
	Evaluating language models	1	1,2	1
UNIT 2	Word Level and Syntactic Analysis	9		

	Word Level Analysis: Regular	1	1	1,2
	Expressions	1		
	Finite-State Automata	1	1	1,2
	Morphological Parsing	1	1	1,2
	Spelling Error Detection and Correction-	1	1,2	1,2
	Words	1		
	Word Classes-Part-of Speech Tagging	1	1,2	1,2
	Syntactic Analysis: Context-free	2	1	1,2
	Grammar	2		
	Constituency	1	1,2	1,2
	Parsing-Probabilistic Parsing	1	1,2	1,2
UNIT 3	Semantic Analysis and Discourse Processing	8		
	Semantic Analysis: Meaning	2	1,2,3	3
	Representation	2		3
	Lexical Semantics	1	1,3	3
	Ambiguity-Word Sense Disambiguation	1	1,3	3
	Discourse Processing: Cohesion	1	1,3	3
	Reference Resolution	1	1,3	3
	Discourse Coherence and Structure	2	1,3	3
UNIT 4	Natural Language Generation and Machine Translation	10		
	Natural Language Generation:	2	4	1,3
	Architecture of NLG Systems	1	4	1,3
	Generation Tasks and Representations			,
	Application of NLG	1	4	1,3
	Machine Translation: Problems in	2	4	1,3
	Machine Translation	1	4	1.2
	Characteristics of Indian Languages	1	4	1,3
	Machine Translation Approaches	2	4	1,3
	Translation involving Indian Languages	1	4	1,3
UNIT 5	Information Retrieval and Lexical Resources	7		

2	3,4	1,2,3
1	3,4	1,2,3
1	3,4	1,2,3
1	3,4	1,2,3
1	3,4	1,2,3
1	3,4	1,2,3
	45	•
	2 1 1 1 1 1 1	1 3,4 1 3,4 1 3,4 1 3,4 1 3,4 1 3,4

- 1. James Allen (1994), Natural Language Understanding. The Benajmins/Cummings Publishing Company Inc. 2nd Edition.
- 2. Manning, Christopher, and Hinrich Schutze (1999). Foundations of statistical natural language processing. MIT press.
- 3. Daniel Jurafsky, James H. Martin (2024) . Speech & language processing. Pearson publications. 3rd Edition.

Other Resources

- 1. Dr. Pawan Goyal. IIT Kharagpur. NPTEL Lecture series. https://youtu.be/02QWRAhGc7g
- 2. Dr. Pushpak Bhattacharya. IIT Bombay. NPTEL Lecture series. https://youtu.be/aeOLjFe256E
- 3. Bird, Steven, Ewan Klein, and Edward Loper (2009). Natural language processing with Python: Analyzing text with the natural language toolkit. O'Reilly Media, In.

Continuous Learning A						g Assess	sments	(50%)		End					
	n's Level of nitive Task		A-1 %)	Mid-1 (15%)		CLA-2 (10%)				CLA-3 (15%)				Semester Exam (50%)	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac				
	Remembe														
Leve	r	70%		65%		60%		50%		40%					
11	Understan	7070		0570		0070		3070		4070					
	d														
Leve	Apply	30%		35%		40%		50%		60%					
12	Analyse	3070		3370		4070		30%		0070					
Leve	Evaluate														
13	Create	1													
	Total	100		100		100		100		100					
	10181	%		%		%		%		%					

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

		Computer Ora	Philo					
Course Code	CSE 424	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	Computer Science and Engineering	Professional / Licensing Standards						

Computer Graphics

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Introduce how graphics are represented in digital media.

Objective 2: Gain knowledge on how digital is presented in viewing devices and computers.

Objective 3: Understand the modification and representation in 2D and 3D media over a wide domain.

	At the end of the course the learner	Bloom's	Expected	Expected
	will be able to	Level	Proficiency	Attainment
			Percentage	Percentage
Outcome	Understand 2d and 3D model graphics	2	80%	70%
1	media in computer vision.			
Outcome	Examine the inner content of 2D and 3D	4	70%	65%
2	media.			
Outcome	Use of heterogeneous display devices	3	80%	70%
3	(like mobile, tv, hologram etc.) in			
	computer vision to display the content of			
	2D and 3D media.			
Outcome	Implement a system using graphic design	3	90%	70%
4	skills to fulfil user requirements.			

	E n g r o b l r e b l	D e s i g n a n	A n a l y s i s , D	M o d e r n T	S o c i e t y a n d M	E n v i r o n m e n	M o r a l , a n	Jutco I n d i v i d u a	C o m u	P r o j e c t M a	S e l f - D i r e c t	P S O 1	P S O 2	P S O 3
CLOS	n A g n A m l w s l i g e	d D e v e l o p m e n t	e s i g n a n d R e s e a r c h	o o l a n d I C T U s a g e	u l t u l t u r a l S k i l s	t a n d S u s t a i n a b i l i t y	d E t h i c a l A w a r e n e s s	l a n d T e a m w o r k S k i l S	n i c a t i o n S k i l s	n a g e m e n t a n d F i n a n c e	e d a n d L i f e L o n g L e a r n i n g			
Outcome 1 3		2	1	2							2	3	2	1
Outcome 2 3	2	1	2	2							3	3	2	2
Outcome 3 3		3	2	2							3	3	2	2
Outcome 4 3		3	3	3							3	3	3	2
Course3Average	2	2	2	2							3	3	2	2

Unit	Unit Name	Required	CLOs	Reference
No.		Contact	Addressed	s Used
		Hours		
UNIT 1	Introduction	9		

				Andhra Pradesh
	Application areas of Computer Graphics,	1	1	1, 2
	Overview of graphics systems, video-display	1	1	1, 2
	devices,	1	1	1, 2
	Raster-scan systems,	1	1	1, 2
	Random scan systems	1	1	1, 2
	Graphics monitors and workstations and input	1	1	1.2
	devices	1	1	1, 2
	Points and lines, line drawing algorithms,	1	1	1, 2
	Mid-point circle and ellipse algorithms.	1	1	1, 2
	Filled area primitives: Scan line polygon fill			
	algorithm, boundary-fill and flood-fill	2	1	1, 2
	algorithms.			
UNIT 2	2-D Geometrical transforms	10		
			1.0	1.0
	Translation, scaling, rotation	2	1,2	1, 2
	Reflection and shear transformations	1	1,2	1, 2
	Matrix representations and homogeneous			
	coordinates,	2	1,2	1, 2
	Composite transforms,	1	1, 2	1, 2
	Transformations between coordinate systems.	1	1, 2	1, 2
	The viewing pipeline, viewing coordinate			
	reference frame,	1	1, 2	1, 2
	Window to view-port coordinate transformation,			
	viewing functions,	1	1, 2	1, 2
	Cohen-Sutherland and Cyrus-beck line clipping			
	algorithms, Sutherland –Hodgeman polygon	1	1,2	1,2
	clipping algorithm.	1	1,2	1,2
UNIT 3	3-D Object representation	11		
01011 5	Polygon surfaces, quadric surfaces,	1	1, 2	1, 2
	Spline representation	1	1, 2	1, 2
	Hermite curve,	1	1, 2	1, 2
	Bezier curve and B-spline curves, Bezier and B-	1	1, 2	1, 2
	spline surfaces.	2	1, 2	1, 2
	Basic illumination models,	1	1, 2	1, 2
	Polygon rendering methods.	1	1, 2	1, 2
	Translation, rotation, scaling, reflection and	1	1, 2	1, 2
	-			
	shear Transformations, composite transformations.	2	1, 2	1, 2
	3-D viewing: Viewing pipeline, viewing			
	coordinates, view volume and general projection	2	1, 2	1, 2
	transforms and Clipping	<u>ک</u>	1, 2	$1, \angle$
UNIT 4	Visible surface detection methods	7		
UNII 4		/		
	Classification,	1	3	1, 2
	Back-face detection,	1	3	1, 2

epth-buffer, can-line, epth sorting SP-tree methods,	1 1 1 1	3 3 3	1, 2 1, 2 1, 2
epth sorting SP-tree methods,	1 1 1	3	
SP-tree methods,	1	-	1, 2
	1	2	
		3	1, 2
rea sub-division and octree methods	1	3	1, 2
omputer animation	8		
esign of animation sequence,	1	4	1, 2
eneral computer animation functions,	1	4	1, 2
aster animation,	1	4	1, 2
omputer animation languages,	2	4	1, 2
ey frame systems,	1	4	1, 2
otion specifications	2	4	1, 2
otal contact hours		45	
	esign of animation sequence, eneral computer animation functions, ster animation, omputer animation languages, ey frame systems, otion specifications	omputer animation8esign of animation sequence,1oneral computer animation functions,1ster animation,1omputer animation languages,2ey frame systems,1otion specifications2	omputer animation8esign of animation sequence,14eneral computer animation functions,14ster animation,14omputer animation languages,24ey frame systems,14otion specifications24

- 1. Hearn, D., & Baker, M. P. (2002). Computer Graphics C Version. Pearson Education.
- 2. Foley, J. D., Van Dam, A., Feiner, S. K., & Hughes, J. F. (2013). Computer Graphics Principles & Practice (2nd ed. in C). Pearson Education.

Other Resource

- 1. Xiang, Z., & Plastock, R. (2000). Computer Graphics, Second Edition. Schaum's Outlines. Tata McGraw-Hill Education.
- 2. Rogers, D. F. (2017). Procedural Elements for Computer Graphics (2nd ed.). Tata McGraw-Hill.
- 3. Neumann, P. G., & Sproull, R. F. (2001). Principles of Interactive Computer Graphics. Tata McGraw-Hill.
- 4. Govil-Pai, S. (2007). Principles of Computer Graphics. Springer.

			Cont	inuous	Learnir	ng Asses	ssments	(50%)		E	nd
	s Level of tive Task		LA-1 0%)		id-1)%)		A-2)%)	CLA- (10%)			ester (50%)
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level 1	Remember	50		50%		50%		50%		30%	
Level I	Understand	%									
Level 2	Apply	50		50%		50%		50%		70%	
Level 2	Analyse	%									
Level 3	Evaluate										
Level 5	Create										
Т	otal	100 %		100 %		100 %		100 %		100 %	

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

П	DVANCED D	AIASIKUUIU						
Course Code	CSE 425	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3
Pre-Requisite Course(s)	CSE 223	Co-Requisite Course(s)		Progressiv e Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

ADVANCED DATA STRUCTURES AND ALGORITHMS

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** Gain knowledge **on** a variety of advanced data structures and their implementations.
- **Objective 2:** Learn to analyze the efficiency of algorithms.
- **Objective 3:** Understand approximation algorithms and NP-completeness.
- **Objective 4:** Comprehend different algorithm design techniques to solve problems.
- **Objective 5:** Learn complex problems by implementing learned algorithm design techniques and data structures.

	At the end of the course the	Bloom's	Expected	Expected
	learner will be able to	Level	Proficiency	Attainment
			Percentage	Percentage
Outcome	Demonstrate advanced data	2	70%	65%
1	structures and red-black trees, AVL			
	trees, heaps, Hamiltonian graphs,			
	Euler graphs, eternal sorting and			
	randomized algorithms			
Outcome	Analyze the performance of	4	70%	65%
2	asymptotic, probabilistic, amortized,			
	competitive and approximation			
	algorithms in terms of time and			
	space complexity – the efficiency.			
Outcome	Develop TSP & Knapsack optimal	5	70%	65%
3	and approximation algorithms based			
	on P or NP-hard or NP-complete.			
Outcome	Solve the given problem	5	70%	65%
4	based on algorithmic design			
	paradigms and method of			
	analysis - dynamic			
	programming, branch-n-			

	bound & backtracking			
Outcome 5	Justify the algorithmic approach used to calculate time complexity and class of problems based on P, NP and NP hard	5	70%	65%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO) Program Learning Outcomes (PLO)															
		1		P	rogra	m Lea	rning	g Out	come	5 (PL	O)	~	_	_ 1	
CLOs	E n gi n e r in g K n o w le d g e	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	P A n a l y s i s , D e s i g n a n d R e s e a r c	<u> </u>	m Lea S o c i e t y a n d M u l t i c u l t u l t u l t u l t u l t u l t u l t i e t y a n d M u i i e t y a i i e t i i i i i i i i i i i i i i i i	E n v i r o n m e n t a n d S u s t a i n d S u s t a i i i i i i i i i i i i i i i i i i	<u> </u>				S e l f - D i r e c t e d a n d L i f e L o n g L e a r	P S O 1	P S O 2	P S O 3
				h		1 1 s	t y	3	S		e	n i n g			
Outcome 1	3	1	1	1	2								3	2	
Outcome 2	3	3	1	1	2								3	2	
Outcome 3	3	3	3	3	2								3	2	

Average												
Course	3	3	3	2	2		3	2	1	3	2	1
Outcome 5	3	2	2	2	2		3	2	1	1	1	1
Outcome 4	3	3	3	3	2					3	2	1

Unit	Unit Name	Required	CLOs	Reference
No.		Contact	Addresse	s Used
		Hours	d	
UNIT 1		9		
	Importance and need of good data structures and	1	1, 2	1
	algorithms Heaps,			
	AVL Trees	1	1, 2	1
	Red-Black Trees	1	1, 2	1
	Red-Black Trees	1	1, 2	1
	Splay Trees	1	1, 2	1
	B-trees, B+ Trees	1	1, 2	1
	Fibonacci heaps	1	1, 2	1
	Data Structures for Disjoint Sets	1	1, 2	1
	Augmented Data Structures	1	1, 2	1
UNIT 2		8		
	Basics of graphs and algorithms	1	1,4	1
	Cut-sets, Connectivity and Separability,	1	1,4	1
	Planar Graphs, Isomorphism	1	1, 4	1
	Graph Colouring, Covering and Partitioning	1	1, 4	1
	Topological Sort	1	1, 4	1
	Ford-Fulkerson Algorithm, Max-flow and Min-	1	1, 4	1
	cut.			
	Few Algorithms for Dynamic Graphs	1	1	1, 3
	Union Find Algorithms	1	1	1,3
UNIT 3		10		
	Basics of geometric algorithms	1	1,4	1
	Point location, Convex hulls and Voronoi	1	1, 4	1
	diagrams			
	Arrangement and Graph connectivity	1	1, 4	1
	Network Flow and Matching, Flow algorithms	1	1, 4	1
	Maximum Flow – Cuts	1	1, 4	1
	Maximum Bipartite Matching	1	1, 4	1
	Graph partitioning via multi-commodity flow	1	1, 4	1
	Karger'r Min Cut Algorithm	1	1, 4	1
	String matching	1	1, 4	1
	Document processing algorithms	1	1, 4	1
UNIT 4		9		
	Approximation algorithms for known NP hard problems	1	3,5	1
	Need of approximation algorithms	1	3,5	1

				rituinarraucai
	Introduction to P, NP, NP-Hard	1	3,5	1
	NP-Complete	1	3,5	1
	Deterministic, non-Deterministic Polynomial time	1	3,5	1
	algorithms			
	Use of Linear programming and primal dual	1	3,5	1
	Local search heuristics	1	3,5	1
	Basic techniques for sorting, searching, merging	1	3,5	1
	list ranking in PRAMs and Interconnection	1	3,5	1
UNIT 5		9		
	Randomized algorithms	1	3,4	1
	Type of Randomized Algorithms	1	3,4	1
	Quick Sort	1	3,4	1
	Min-cut	1	3,4	1
	2-SAT	1	3,4	1
	Game Theoretic Techniques	1	3,4	2
	Game Theoretic Techniques	1	3,4	2
	Random Walks	1	3,4	1,3
	Random Walks	1	3,4	1,3
	Total Contact Hours		45	
	Min-cut 2-SAT Game Theoretic Techniques Game Theoretic Techniques Random Walks Random Walks	1 1 1 1 1 1 1	3,4 3,4 3,4 3,4 3,4 3,4 3,4	2 1,3

- 1. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms. Prentice Hall India.
- 2. Goldberg, D. E. (2005). Genetic Algorithms. Pearson Education.
- 3. Sedgewick, R., & Wayne, K. (2011). Algorithms. Addison-Wesley Professional.

Other Resources

1. Sahni, S. (2005). Data Structures, Algorithms, and Applications in C++. MIT Press.

		Co	ntinuous Le	arning Ass	essments ((50%)	End
Bloom's Level of Cognitive Task		(5%) (10%)		CLA-2 (5%)	CLA- 3 (10%)	Course Project (20%)	Semester Exam (50%)
		Th	Th	Th	Th		Th
Leve 11	Remembe r Understan d	20%	20%	20%	20%	20%	20%
Leve 12	Apply Analyse	40%	40%	40%	40%	40%	40%
Leve 13	Evaluate Create	40%	40%	40%	40%	40%	40%
	Total	100%	100%	100%	100%	100%	100%

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

		istiisättea opei	8-7					
Course Code	CSE 426	Course Technical		L-T-P-C	3	0	0	3
Course Coue	CSE 420	Category	Elective (TE)	L-1-1-C				
Pre-Requisite Course(s)	CSE 302	Co-Requisite Course(s)		Progressive Course(s)				
Course	CSE	Professional /						
Offering		Licensing						
Department		Standards						

Distributed Operating Systems

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To understand the concepts that underlie distributed computing systems along with design and implementation issues.

Objective 2: To study the key mechanisms and models for distributed systems.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Demonstrate the architectural models and design issues in distributed systems.	3	70%	65%
Outcome 2	Illustrate the time services in distributed systems.	3	70%	65%
Outcome 3	Explain concurrent programming languages.	2	70%	65%
Outcome 4	Identify Inter Process Communication techniques.	2	70%	65%
Outcome 5	Compare and contrast distributed scheduling algorithms.	4	70%	65%

					Dare			:							
CLOs	E n g i n e e r i n g K n o w l e d g e	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e 1 o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	Prog M o d e r n T o o l a n d I C T U s a g e	ram I S o c i e t y a n d M u l t i c u l t u l t u r a l S k i l s	E n v i r o n m e n t a n d S u s t a i n a b i 1 i t y	ing O M o r a l , a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k i l l s	nes (I C o m u n i c a t i o n S k i l l s	PLO) Project Management and Finance	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f e l f - D i r e c t e n f f - n g L e a f f - n g L e a f f - n g L e a f f - n g L e a f - n g L e a f - n g L e a f - n g L i a f - n g L a f - n g L a f - n g - n g L a f - n g L a f - n g L a f - n g L a f - n g L a f - n g L a f - n g L a f - n g L a f - n g L a f - n g L a f - n g L a f - n g L a f - n g L a f - n g L a f - n g L a a n g L a - n g L a - n g S - n a - n g L a - c a - n a n g L a - n a - n a n g L a - n a - n a S - a - n a - n a - n a - a - n a - n g L a - a - n g L a - n g L a - n a - n a - n a - n a - n a - n a - n a - n a - n a - n a - n a - n a - n a - n - n	P S O 1	P S O 2	P S O 3
Outcome 1	2	3	3	3	2								3	2	1
Outcome 2	2	2	3	3	2								2	2	2
Outcome 3	2	3	3	2	2								2	2	2
Outcome 4	3	3	3	3	2								2	3	2
Outcome 5	3	3	3	3	2								2	3	2
Course	2	3	3	3	2								2	2	2
Average															

Unit No.	Unit Name	Required Contact	CLOs Addresse	Reference s Used
		Hours	d	
UNIT 1	Fundamentals	9		
	What is distributed operating system	1	1	1, 2, 01
	Issues in designing distributed operating system	1	1	1, 2, 01
	Computer networks: Lan, WAN technologies	1	1	1, 2
	Communication protocols, internetworking	1	1	1, 2
	Message passing	1	1	1, 2
	Issues in IPC by message passing	1	1	1, 2
	Synchronization	1	1, 2	1, 2
	Buffering group communication	1	1, 2	1, 2
	Case study	1	1, 2	1, 2
UNIT 2	Remote Procedure Calls	9	-, _	_,
01111				
	The RPC model	1	1, 3, 4	1, 2
	Implementing RPC	1	3, 4	1, 2
	RPCs in heterogeneous environment	1	3, 4	1, 2
	Lightweight RPC	1	3, 4	1, 2
	Distributed shared memory: general architecture	1	1	1, 2
	of DSM systems			
	Design and implementation issues of DSM	1	1	1, 2
	Consistency models	1	1	1, 2
	Replacement strategies, advantages of DSM	1	1	1, 2
	Case study	1	1, 3, 4	1, 2
UNIT 3	Process Management	9		
	Introduction, Process migration	1	1, 4	1, 2
	Threads. Synchronization: Clock synchronization	1	1, 4	1, 2, 3
	Event ordering	1	1, 4	2, 3
	Mutual exclusion	1	4	2, 3
	Deadlock	1	4	2, 3
	Election algorithms	1	4	1, 2
	Resource management: global scheduling	1	4, 5	1, 2
	algorithm			
	Task assignment	1	5	1, 2
	Load sharing and balancing approaches.	1	5	1, 2
UNIT 4	Distributed File System	9		
	Desirable features of a good DFS	1	1	1, 2, 3
	File models	1	1	1, 3
	File accessing models	1	1	1, 3
	File sharing semantics	1	1	1, 3
	File caching schemes	1	1, 2	1, 3

	File replication	1	1	1, 3
	Fault tolerance	1	1, 2	1, 3
	Atomic transactions, design principles	1	1, 2, 4	1, 3
	Case study: Google DFS and Hadoop DFS	1	1, 2, 4	1, 3
UNIT 5	Naming	9		
	Desirable features of a good naming system, system- oriented names	1	1	2, 3, 01
	Object locating mechanisms, human oriented names	1	1	2, 3
	Name caches	1	1	2, 3
	Naming and security	1	1	2, 3
	Security: potential attacks	1	1	2, 3
	Cryptography	1	1	2, 3
	Authentication	1	1, 2	2, 3
	Access control	1	1, 2	2, 3
	Digital signatures, design principles	1	1	2, 3
	Total Contact Hours		45	

- 1. Sinha, P. K. (2007). Distributed Operating Systems: Concepts and Design, Prentice Hall of India.
- 2. Singhal, M., & Shivratri, N. (2017). Advanced Concepts in Operating System, Mc Graw hill publications.
- 3. Tanenbaum A. S. & Steen, M. V. Distributed Systems, Principles and Paradigms, Pearson publications, 2nd edition.

Other Resources

O1. Tannenbaum, A. S. Distributed Operating Systems, Pearson Education, 5th edition.

	s Level of	Conti	End Semester Exam (50%)			
Cognit	tive Task	CLA-1 (10%)	CLA-2 (15%)	CLA-3 (10%)	Mid-1 (15%)	
		Th	Th	Th	Th	Th
Laval 1	Remember	70%	60%	50%	40%	30%
Level 1	Understand	-				
Level 2	Apply	30%	40%	50%	60%	70%
Level 2	Analyse	-				
Level 3	Evaluate					
Level 5	Create					
Т	otal	100%	100%	100%	100%	100%

SRM University – **AP, Andhra Pradesh** Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

			, mining					
Course Code	CSE 427	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3
Pre- Requisite Course(s)	CSE 209	Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Data and Web mining

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Understand the need for data mining.

Objective 2: Gain knowledge various stages in data mining process.

Objective 3: Learn various data mining algorithms and its application domain.

Objective 4: Familiarize web mining in detail and the need for web mining.

Objective 5: Understand the use of web mining in social network analysis.

	At the end of the course the learner will be able to	Bloom 's Level	Expecte d Proficie ncy Percenta ge	Expected Attainm ent Percenta ge
Outcome 1	Apply data mining algorithms to solve the given problems.	2	75%	70%
Outcome 2	Compare and evaluate data mining techniques	5	75%	70%
Outcome 3	Apply web crawling, web-page pre-processing and page ranking	3	70%	60%
Outcome 4	Acquire data from social networking websites and analyse it for efficient recommendation purpose.	4	70%	60%

				<u>CLO) to</u> Pr	ograi							/			
CLOs	E n gi n e er in gK n o w le d g e	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	Ana lysi s, Des ign and Res earc h	M o d e r n T o o l a n d I C T U s a g e	S o c i e t y a n d M u l t i c u l t u r a l S k i l l s	E nvi r o nme n t a ndS u s t a i n a b i l i t y	M o r a l , a n d E t h i c a l A W a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k i l s	C o m m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a c e	Self-DirectedandLifeLongLearning	P S O 1	P S O 2	P S O 3
Outcome 1	1	2		1									1		3
Outcome	2	2	3	3									3	2	3
2 Outcome	2	2	3	3									3	2	3
3															
Outcome 4	2	2	2	3									3	2	3
Course Average	2	2	3	3									3	2	3

Unit No.	Unit Name	Required Contact Hours	CLOs Addresse d	Reference s Used
UNIT 1	Introduction	9		
	Introduction to Data Mining: What is data mining? Data Mining Goals.	2	1	1, 2
	Related technologies - Machine Learning, DBMS, OLAP, Statistics.	1	1	1
	Stages of the Data Mining Process.	1	1	1, 2
	Data Mining Techniques.	1	2	1, 2
	Knowledge Representation Methods.	1	2	1, 2
	Data Warehouse and OLAP: Data Warehouse and DBMS.	1	1	1
	Multidimensional data model.	1	1	1
	OLAP operations.	1	1	1
UNIT 2	Data pre-processing	9		
	Data pre-processing: Data cleaning. Data transformation.	2	1	1
	Data reduction. Data mining knowledge representation	2	1	1
	Attribute-oriented analysis.	1	1	1
	Data mining algorithms: Association rules: Motivation and terminology.	1	1, 2	1, 2
	Basic idea: item sets.	1	1, 2	1, 2
	Generating item sets and rules efficiently.	1	1, 2	1, 2
	Correlation analysis.	1	1, 2	1, 2
UNIT 3	Data mining algorithms	9		,
	Data mining algorithms: Classification.	1	1, 2	1, 2
	Basic learning/mining tasks, inferring rudimentary rules: 1R algorithm.	2	1, 2	1, 2
	Decision trees, Covering rules.	1	1, 2	1, 2
	Data mining algorithms: Prediction, The prediction task.	2	1, 2	1, 2
	Statistical (Bayesian) classification.	1	1, 2	1, 2
	Bayesian networks.	1	1, 2	1, 2
	Instance-based methods (nearest neighbour),			
	Linear models.	1	1, 2	1, 2
UNIT 4	Web crawling	9		
	Web crawling: Basic crawler algorithm.	2	3	3, 4
	Focused crawlers, Topical crawlers.	2	3	3, 4
	Web search: Web page pre-processing.	2	3	3, 4
	Inverted index, HITS algorithm.	1	3	3, 4

	Page ranking algorithm.	1	3	3, 4
	Leadership algorithm.	1	3	3, 4
UNIT 5	Social network analysis	9		
	Social network analysis: Co-citation and bibliographic coupling	2	4	5
	Community discovery.	2	4	5
	Web usage mining: Recommender systems.	2	4	5
	Mining Twitter.	1	4	5
	Mining Face book.	1	4	5
	Mining Instagram.	1	4	5
	Total Contact Hours		45	

1. Han, J., Kamber, M., & Pei, J. (2011). Data mining: Concepts and techniques, 3rd ed. Morgan Kaufmann publications.

2. <u>Michael</u>, V. K., <u>Steinbach</u>, <u>Pang-Ning Tan</u>, (2016). Introduction to Data Mining, Pearson publications.

3. Chakrabarti, S. (2002). Mining the web, Elsevier publications.

4. Liu, B. (2011). Web Data Mining, Second Edition, Springer publications.

5. Russel, M. A., & Klassen, M. (2018). Mining the Social Web, Third edition, Oreily publications.

Bloom's Level of Cognitive Task		Continuous Learning Assessments (50%)								End	
		CLA-1 (10%)		Mid-1 (15%)		CLA-2 (10%)		CLA-3 (15%)		Semester Exam (50%)	
		Level 1	Remember	20	-	10%	-	-	-	10%	-
Understand	%										
Level 2	Apply	70	-	70%	-	70	-	80%	-	80%	-
	Analyse	%									
Level 3	Evaluate	10	-	20%	-	30%	-	10%	-	10%	-
	Create	%									
Total		100		100		100		100		100	
		%		%		%		%		%	

		COMI LEAH	I IIILOKI					
Course Code	CSE 428	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3
Pre- Requisite Course(s)	CSE207	Co-Requisite Course(s)		Progressi ve Course(s)				
Course Offering Departmen t	CSE	Professional / Licensing Standards			<u>.</u>			

COMPLEXITY THEORY

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** Understand the complexity of a problem that can be solved using algorithms, and how much resources (in form of time and space) it takes to solve a problem algorithmically.
- **Objective 2:** Studies problems that cannot be solved and problems for which it is difficult to design efficient algorithms and how we can recognize such hard problems.

Objective 3: Gives a precise definition of what an algorithm is via Turing machines.

Objective 4: Learn central complexity classes, in particular NP-complete problems.

	At the end of the course the	Bloom's	Expected	Expected
	learner will be able to	Level	Proficiency	Attainment
			Percentage	Percentage
Outcome 1	Define an algorithm and identify	1	70%	65%
	the given problems that be solved			
	using an algorithm.			
Outcome 2	Illustrate the ideas of solvability,	1	65%	60%
	computational models, and working			
	with Turing Machines.			
Outcome 3	Classify and apply decision	2	65%	60%
	problems into appropriate			
	complexity classes, including P,			
	NP, PSPACE and complexity			
	classes based on randomised			
	machine models			
Outcome 4	Demonstrate NP-completeness	2	60%	55%
	basic hard problems.			
Outcome 5	Apply interactive proofs in the	3	60%	55%
	analysis of optimisation problems.			

					Prog										
CLOs	EngineeringKnowledge	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	$\begin{bmatrix} \mathbf{r} \mathbf{n} & \mathbf{l} \\ \mathbf{s} \\ $	E = n $V = i$ $r = 0$ n d $S = 0$ i i i i i i j	M o r a l , a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k i l l s	C o m u n i c a t i o n S k i l l s	P r o j e c t M a n e m e n t a n d F i n a c e	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f e c t e a r n g L e a r n g	P S O 1	P S O 2	P S O 3
Outcome 1	2	3	1	2	1								3	2	
Outcome 2	1	2	3	3	1								2	2	
Outcome 3	1	3	2	3	1								3	2 2	
Outcome 4 Outcome 5		3		3	1								$\frac{3}{2}$		
Course	1 1	3 3	1 2	3 3	1								<u>2</u> 3	1 2	
Average	1	3	2	3	1								3	4	
Average															

Unit	Unit Name	Required	CLOs	Reference
No.		Contact	Addresse	s Used
		Hours	d	
UNIT 1	COMPUTABILITY	9		

			10 M & 10 M &	ratum a Frauesu
	A recap of automata theory and the Church- Turing Thesis	1	1,2	1
	Computational models: Lambda calculus, Turing machine	1	1,2	1
	Decidability	2	1,2	1
	Reducibility	2	1,2	1
	The PCP problem & Mapping reducibility	1	1,2	1
	The Recursion Theorem	1	2,3	1
	Definition of Information	1	2,3	1
UNIT 2	TIME COMPLEXITY	10	,	
	Measuring Complexity, Big-O and small-o notation, Analysing algorithms.	1	3	1
	Complexity relationships among computational models	1	3	1
	The Class-P, Examples	2	3	1
	The Class-NP, Examples	2	3	1
	The P versus NP question	1	3	1
	NP-completeness	1	3	1
	The Cook-Levin Theorem	1	3	1
	Additional NP-completeness Problems	1	3	1
UNIT 3	SPACE COMPLEXITY	9		
	Space complexity.	1	3	1
	Savitch's Theorem and NL.	2	3	1
	NL-completeness and log-space reductions.	2	3	1
	From P-completeness to PSPACE-completeness.	2	3	1
	The Classes L and NL	1	3	1
	NL completeness, NL equals coNL	1	3	1
UNIT 4	INTERACTABILITY	9		
	Hierarchy Theorems	3	4	1
	Relativization	3	4	1
	Circuit Complexity	3	4	1
UNIT 5	ADVANCED TOPICS IN COMPLEXITY THEORY	8		
	Approximation Algorithms	1	1,5	1
	Probabilistic Algorithms	2	1,5	1
	Alternation	2	1,5	1
	Interactive Proof Systems	3	1,5	1
	Total contact hours		45	•

1. Sipser M. (2012), Introduction to the Theory of Computation, 3rd edition. Cengage Learning

Other Resources

1. Arora, S., & Barak, B. (2009). Computational complexity: a modern approach. Cambridge University Press.

			Cont	inuous	Learnin	ng Asses	ssments	(50%)		E	nd
Bloom	's Level of	CL	A-1	Mid-1		CL	A-2	CLA-3		Sem	ester
Cogni	tive Task	(10)%)	(20	(20%) (10%)		(10)%)	Exam	(50%)	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Laval 1	Remember	80%		80%		65%		65%		60%	
Level 1	Understand										
Level 2	Apply	20%		20%		35%		35%		40%	
Level 2	Analyse										
Level 3	Evaluate										
Level 5	Create										
Т	Total			100		100		100		100	
				%		%		%		%	

Learning Assessment

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Software Project Management

Course Code	CSE 429	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3
Pre-Requisite Course(s)	CSE 306	Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards		IEEE				

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Deliver successful software projects that support organization's strategic goals.

Objective 2: Match organizational needs to the most effective software development model.

Objective 3: Plan and manage projects at each stage of the software development life cycle (SDLC).

Objective 4: Create project plans that address real-world management challenges.

Objective 5: Develop the skills for tracking and controlling software deliverables.

to

Outcome 1	Apply the process to be followed in the software development life-cycle models.	3	70%	65%
Outcome 2	Implement communication, modelling, construction & deployment practices in software development.	3	70%	65%
Outcome 3	Describe the key phases of project management.	2	70%	65%
Outcome 4	Apply the concepts of project management & planning.	3	70%	65%
Outcome 5	Explain the quality management & different types of metrics used in software development.	2	70%	65%

	Program Learning Outcomes (PLO)														
CLOs	EngineeringKnowledge	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	$\begin{array}{c} \mathbf{x} \\ $	E n v i r o n m e n t a n d S u s t a i n d S u s t a i i r o n m e n t a n d S u s t j i r o n t y	M o r a l , a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m W o r k S k i l s	C o m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a c e	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f e c t e a r n g L e a r n g	P S O 1	P S O 2	P S O 3
Outcome 1	3	3	2	1				1	1	3	1	3	2	1	

Outcome 2	3	2	2	1				3	1	3	2	1	
Outcome 3	3	2	2	2		1	1	3	1	3	2	1	
Outcome 4	3	3	2	2		1	1	3	1	3	2	1	
Outcome 5	3	3	2	2		1	1	3	2	3	2	1	
Course											2	1	
Average	3	3	2	2		1	1	3	1	3			

Unit	Unit Name	Required	CLOs	Referenc
No.		Contact	Address	es Used
		Hours	ed	
UNIT	SOFTWARE MANAGEMENT & ECONOMICS	12		
1				
	Conventional Software Management	1	1	1, 2
	SDLC -waterfall model	1	1	1, 2
	Conventional software Management performance.	2	1	1, 2
	Software Economics.	1	1	1, 2
	pragmatic software cost estimation.	1	1	1, 2
	Improving Software Economics-Reducing software	1	1	1, 2
	product size			
	Improving Software Processes & Team Effectiveness.	1	1	1, 2
	Improving Automation through Software	1	1	1, 2
	Environments.			
	The principles of conventional software Engineering	1	1	1, 2
	Principles of modern software management	1	1	1, 2
	Transitioning to an iterative process.	1	1	1, 2
UNIT	THE OLD AND THE NEW WAY OF PROJECT	8		
2	MANAGEMENT			
	The principles of conventional software engineering	1	2	1, 2
	Principles of modern software management	1	2	1, 2
	Transitioning to an iterative process	1	2	1, 2
	Basics of Software estimation – Effort and Cost	1	2	1, 5
	estimation techniques			
	COSMIC Full function points	1	2	1, 5
	COCOMO-I and COCOMO II	2	2	1, 5
	A Parametric Productivity Model - Staffing Pattern.	1	2	1, 5
UNIT	SOFTWARE MANAGEMENT PROCESS	9		
3	FRAMEWORK			
	Life cycle phases: Engineering and production stages.	1	3	1, 2
	Inception, Elaboration.	1	3	1, 2
	Construction, transition phases.	1	3	1, 2
	Artifacts of the process: The artifact sets,	1	3	1, 2
	Management artifacts.			
	Engineering artifacts, programmatic artifacts.	1	3	1, 2
	Model based software architectures: A Management	2	3	1, 2
	perspective and technical perspective.			

			and a far have a far have a	renound i renocati
	Work Flows of the process: Software process	1	3	1, 2
	workflows, Iteration workflows.			
	Checkpoints of the process: Major milestones, Minor	1	3	1, 2
	Milestones, Periodic status assessment.			
UNIT	PROJECT ORGANIZATION AND PLANNING	8		
4				
	Iterative Process Planning: Work breakdown structures,	2	4	1, 2
	planning guidelines,			
	Cost and schedule estimating.	1	4	1, 2
	Iteration planning process.	1	4	1, 2
	Pragmatic planning.	1	4	1, 2
	Project Organizations and Responsibilities: Line-of-	1	4	1, 2
	Business Organizations.			
	Project Organizations, evolution of Organizations.	1	4	1, 2
	Process Automation: Automation Building blocks, The	1	4	1, 2
	Project Environment.			
UNIT	PROJECT CONTROL AND PROCESS	8		
5	INSTRUMENTATION			
	The seven core Metrics, Management indicators.	1	5	1, 3
	Quality indicators, life cycle expectations.	1	5	1, 3
	Pragmatic Software Metrics, Metrics automation.	1	5	1, 3
	Tailoring the Process: Process discriminates.	1	5	1, 3
	Future Software Project Management	1	5	1, 3
	Modern Project Profiles	1	5	1, 3, 4
	Next generation Software economics	1	5	1, 3, 4
	Modern process transitions.	1	5	1, 3, 4
	Total Contact Hours		45	

- 1. Royce, W. (2006), "Software Project Management", 1st Edition, Pearson Education.
- 2. Huges, B. Cotterell, M. Mall, R. (2017). Software Project Management, 6th Edition, Tata McGraw Hill.
- 3. Kelkar, SA (2013). Software Project Management: A Concise Study, 3rd Edition, PHI.
- 4. Henry, J. (2009). Software Project Management: A Real-World Guide to Success, Pearson Education.
- 5. Pankaj Jalote, (2015). Software Project Management in Practice, Pearson Education.

Other Recourses

 Weck, O. de, &b Lyneis, J. Braha, D. (2012) System Project Management. https://ocw.mit.edu/courses/engineering-systems-division/esd-36-system-project-management-fall-2012/

2. <u>https://uit.stanford.edu/pmo/pm-life-cycle</u>

Learning Assessment

			Con	tinuous	Learni	ng Asse	ssments	(50%)		E	nd
Bloom	's Level of	Cl	LA-1	Mi	id-1	CL	A-2	CL	A-3	Sem	ester
Cogn	itive Task	(1	0%)	(15	5%)	(10	%)	(15	5%)	Exam	(50%)
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level 1	Remember	40		60%		50%		40%		30%	
Level I	Understand	%									
Level 2	Apply	60		40%		50%		60%		70%	
Level 2	Analyse	%									
Level 3	Evaluate										
Level 5	Create										
		10		100		100		100		100	
r.	Total			%		%		%		%	
	10(81	%									

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

MULTIMEDIA

Course Code	CSE 430	Course	Technical	L-T-P-C	3	0	0	3
Course Coue	CSE 450	Category	Elective (TE)	L-I-F-C				
Pre-Requisite		Co-Requisite		Progressive				
Course(s)		Course(s)		Course(s)				
Course	Computer	Professional /						
Offering	Science	Licensing						
Department	Engineering	Standards						

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** Introduces multimedia elements including image, graphics, sound, and video components.
- **Objective 2:** To learn the fundamentals of multimedia processing with relation to the multimedia elements.
- **Objective 3:** To gain knowledge over accessing and modification of multimedia content in real-world scenario.

	At the end of the course the learner will be able to	Bloom 's Level	Expected Proficien cy Percenta	Expected Attainme nt Percentag
			ge	e
Outcome	Understand content creation editing and	2	80%	70%
1	managing of multimedia as image, video, and sound media.			

Outcome 2	Use and examine the inner content of multimedia signal	3	70%	65%
Outcome 3	Use spatial and temporal analysis in the frequency domain of the signal processing to process multimedia signals and make them easy to handle.	3	80%	70%
Outcome 4	Implement a system using MM techniques to solve user requirements.	6	80%	70%

				Prog	ram I	Learn	ing (Dutco	mes	PLO)			
CLOs	E n g P r o b l e m A n a l y s l e d g e	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	Prog M o d e r n T o o l a n d I C T U s a g e	$\begin{array}{c} \mathbf{ram \ I} \\ \mathbf{S} \\ \mathbf{o} \\ \mathbf{c} \\ \mathbf{i} \\ \mathbf{e} \\ \mathbf{t} \\ \mathbf{y} \\ \mathbf{a} \\ \mathbf{n} \\ \mathbf{d} \\ \mathbf{M} \\ \mathbf{u} \\ \mathbf{l} \\ \mathbf{t} \\ \mathbf{i} \\ \mathbf{c} \\ \mathbf{u} \\ \mathbf{l} \\ \mathbf{t} \\ \mathbf{i} \\ \mathbf{s} \\ \mathbf{i} \\ \mathbf{l} \\ \mathbf{s} \end{array}$	E earn E n v i r o n m e n t a n d S u s t a i n d S u s t a i i r o n m e n t a n d S u s t a i i r o n t y i i r	ing (M or al, and E t h i c al A w a r e n e s s	Jutco I n d i v i d u a 1 a n d T e a m W o r k S k i 1 s	C o m u n i c a t i o n S k i l l s	PLO P r o j e c t M a n a g e m e n t a n d F i n a n c e) Self -DirectedandLifeLongLearning	P S O 1	P S O 2	P S O 3

Average												
Course	3	2	2	2	2				3	3	2	2
Outcome 4	3	3	3	2	3				3	3	3	2
Outcome 3	3	3	3	2	2				3	3	2	2
Outcome 2	3	2	1	2	2				3	3	2	2
Outcome 1	3	1	2	1	2				3	3	2	1

Unit	Unitization Plan Unit Name	Required	CLOs	Reference
No.	Chint Hume	Contact	Addresse	s Used
110.		Hours	d	3 0 300
UNIT	INTRODUCTION TO MULTIMEDIA	8	u	
1		0		
	What is Multimedia?	1	1	1, 2
	Multimedia and Hypermedia	1	1	1
	Overview of Multimedia Software Tools	1	1	1, 2
	Graphics Image Data Types	2	1	1, 2
	File Formats and representation (image, video,		1	
	and sound)	3		1, 2
UNIT	COLOUR IN IMAGE AND VIDEO	9		
2				
		1	1,2	1
	Color Science	1		
	Color Models in Images	1	1,2	1
	Color Models in Video	1	1,2	1
	Fundamental Concepts in Video	1	1,2	1,2
	Analog Video	1	1,2	1,2
	Digital Video	1	1,2	1,2
	Digitization of Sound, MIDI: Musical Instrument	1	1,2	1,2
	Digital Interface,	1		
	Quantization and Transmission of Audio.	1	1,2	1,2
		1	1,2	1,2
	Color Science	1		
UNIT	LOSSLESS COMPRESSION ALGORITHMS	9		
3		/		
	Basics of Information Theory, Run-Length	1	2	1,2
	Coding,			
	Variable-Length Coding,	2	2	1,2
	Dictionary-Based Coding	1	2	1,2
	Arithmetic Coding	1	2	1,2
	Lossless Image Compression	1	2	1,2
	Distortion Measures, The Rate-Distortion Theory	1	2	1,2
	Quantization, Transform Coding,	1	2	1,2
	Wavelet-Based Coding, Embedded Zero tree of	1	2	1,2
	Wavelet Coefficients,	<u> </u>		

UNIT	IMAGE COMPRESSION STANDARDS	10		
4		10		
	The JPEG Standard	1	3	1
	The JPEG2000 Standard,	1	3	1
	The JPEG-LS Standard, Bilevel Image	1	3	1
	Compression Standards	1		
	Introduction to Video Compression,	1	3	1
	Video Compression Based on Motion	1	3	1
	Compensation,	1		
	Search for Motion Vectors,	2	3	1
	H.261	1	3	1
	H.263	1	3	1
	ADPCM in Speech Coding, G.726 ADPCM,	1	3	1
	Vocoders	1		
UNIT	MPEG Video Coding I - MPEG-1 and 2	9		
5		/		
	MPEG-1	1	4	1
	MPEG-2	1	4	1
	Overview of MPEG-4	1	4	1
	Object-Based Visual Coding in MPEG-4	1	4	1
	Synthetic Object Coding in MPEG-4	1	4	1
	MPEG-4 Part10/H.264, H.264/SVC	1	4	1
	MPEG-7, H.265/HEVC, 3D-HEVC	1	4	1
	MPEG Audio, Commercial Audio codes.	1	4	1
	MPEG-1	1	4	1
	Total Contact Hours		45	

- 1. Ze-Nian Li, Mark S. Drew, (2004). Fundamentals of Multimedia (FM), in Prentice Hall, (Springer 2nd Edition, 2014 with additional author of Dr.Jiangchuan Liu)
- 2. Nigel P./ Chapman, Jenny, (2009). Digital Multimedia by Chapman (DM), in John Wiley & Sons Inc (3rd Edition)

Other Resources

- 1. Multimedia: Making It Work, (2014). 9 Edition by Vaughan, Tay in McGraw-Hill.
- 2. Multimedia: Computing, Communications and Applications (2012). by Ralf Steinmetz in Pearson Education.
- 3. Recent articles about multimedia (recommended at classes)

		Cont	inuous	Learnir	ng Asses	ssments	(50%)		E	nd
Bloom's Level of	CI	CLA-1 Mid-1 CLA-2 CLA-3				A-3	Semester			
Cognitive Task	(10%)		(15%)		(10%)		(15%)		Exam (50%	
	Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac

Learning Assessment

Laval 1	Remember	40	40%	40%	40%	10%
Level 1	Understand	%				
Level 2	Apply	40	40%	40%	40%	50%
Level 2	Analyse	%				
Level 3	Evaluate	20	20%	20%	20%	40%
Level 3	Create	%				
Т	otal	100	100	100	100	100
	Totai		%	%	%	%

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

DEEP LEARNING

Course Code	CSE 457	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3
Pre-Requisite Course(s)	CSE303	Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1. Understand the fundamental concepts of ML/DL, tensor flow, and keras.

Objective 2. Study of different activation functions and ANN.

Objective 3. Study and application of CNN, and RNN models

Objective 4. Application of different deep learning concepts.

	At the end of the course the learner will be able		Expecte	Expecte
	to	Bloom	d	d
		's	Proficien	Attainm
		Level	cy	ent
			Percenta	Percent
			ge	age
Outcome 1	Illustrate the concepts of ML/DL	1	70%	68%
Outcome 2	Design and implement CNN model	2	70%	65%
Outcome 3	Design and implement RNN model	2	70%	65%
Outcome 4	Apply deep learning models to given problems.	3	70%	60%

		140112				am L									
CLOs	E n g i n e e r i n g K n o w l e d g e	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S = 0 $C = 0$ $C =$	E n V i r O n m e n t a n d S u s t a i n a b i 1 i t y	M o r a l , a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k i l s	C o m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a c e	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f e c t e a r n g L e a r n g	P S O 1	P S O 2	P S O 3
Outcome 1	1	1	1	1	2								2	2	2
Outcome 2	2	2	3	2	3								3	2	2
Outcome 3	2	2	3	2	3								2	3	2
Outcome 4	2	2	3	3	3								2	3	2
Course Average	2	2	3	2	3								2	3	2

Unit No.	Unit Name	Required Contact Hours	CLOs Address ed	Referenc es Used
Unit 1	Introduction:	15		
1	Overview of machine learning	2	1	1
2	Linear classifiers, loss functions	1	1	1
3	Introduction to TensorFlow	1	1	1
4	Computational Graph, Key highlights, Creating a Graph	2	1	1
5	Regression example	1	1	1
6	Gradient Descent	1	1	1
7	TensorBoard	3	1	1
8	Modularity, Sharing Variables	1	1	1
9	Keras	3	4	3
Unit 2	Activation functions, perceptron, ann	7		
10	Activation Functions: Sigmoid, ReLU, Hyperbolic Fns, Softmax	2	1	1,2
11	Perceptrons: What is a Perceptron, XOR Gate	1	1	1
12	Artificial Neural Networks: Introduction	1	1	2
13	Perceptron Training Rule	1	1	2
14	Gradient Descent Rule	1	1	2
15	Vanishing gradient problem and solution	1	1	2
Unit 3	Convolutional Neural Networks	7		
16	Introduction to CNNs	1	1,2	3
17	Kernel filter	1	1,2	3
18	Principles behind CNNs	1	1,2	3
19	Multiple Filters	2	1,2	3
20	Problem and solution of under fitting and overfitting	2	1,2	3
Unit 4	Recurrent Neural Networks	8		
21	Introduction to RNNs	1	1,3	2
22	Unfolded RNNs	1	1,3	2
23	Seq2Seq RNNs	1	1,3	2
24	LSTM	1	1,3	2
25	GRU	2	1,3	2
26	Encoder Decoder architectures	2	1,3	2
Unit 5	Deep Learning applications	8	-,-	
27	Image segmentation	1	4	3
28	Self-Driving Cars	1	4	3
29	News Aggregation and Fraud News Detection	1	4	3
30	Natural Language Processing	1	4	3

31	Virtual Assistants	1	4	3
32	Entertainment	1	4	3
33	Visual Recognition	1	4	3
34	Fraud Detection, Healthcare	1	4	3
	Total Contact Hours		45	

- 1. Buduma, N, & Nicholas, L. (2017). Fundamentals of deep learning: Designing next-generation machine intelligence algorithms. O'Reilly Media, Inc..
- 2. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning, MIT Press.
- 3. Gibson, A., & Patterson, J. (2017). Deep Learning: A Practitioner's Approach, oreilly media.

Other Resources

- 1. Gulli, A., & Pal, S. (2017). Deep learning with Keras. Packt Publishing Ltd.
- 2. <u>https://www.youtube.com/watch?v=aPfkYu_qiF4&list=PLyqSpQzTE6M9gCgajvQbc68Hk_JKGBAYT</u>
- 3. https://www.coursera.org/professional-certificates/tensorflow.

Learning Assessment (Theory)

Ploom	Bloom's Level of		Continuous Learning Assessments (50%)							
Cognitive Task		CLA-1 (15%)	Mid-1 (15%)	CLA-2 (05%)	CLA-3 (15%)	Semester Exam (50%)				
Level 1	Remember	70%	65%	60%	50%	40%				
Level 1	Understand	70%	0370	00%	5070	40%				
Level 2	Apply	30%	35%	40%	50%	60%				
Level 2	Analyse	30%	33%	40%	30%	00%				
Level 3	Evaluate									
Level 5	Create									
]	Fotal	100%	100%	100%	100%	100%				

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	CSE 432	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3
Pre- Requisite Course(s)	CSE 209	Co- Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Advanced Database Management Systems

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To understand how to store data using fixed and variable length records in the file.

Objective 2: To implement index structures in the file.

Objective 3: To implement query parsing and execution.

Objective 4: To understand concurrency control protocols used for transaction processing. **Objective 5:** To understand recovery techniques for recovering from transaction failures.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Outline DBMS components, data storage in files and implement indexing schemes for fast retrieval of data. Explain B- tree, hash tables for complex data storage.	2	75%	80%
Outcome 2	Plan query execution. Construct query compiler, planner and executor.	3	70%	75%
Outcome 3	Analyse data base operations and Compare concurrency control protocols for transaction processing system.	4	75%	80%
Outcome 4	Explain concurrency control and system failure	2	75%	80%

Course Articulation	n Matrix (CLO) to Program	Learning Outcomes (PLO)

CLOs Program Learning Outcomes (PLO)

													-		Andhra Prad
	E n g i n e e ri n g K n o w le d g e	Pr ob le m An aly sis	De sig n an d De vel op me nt	An aly sis, Des ign and Res ear ch	Mo der n Too 1 and ICT Usa ge	S o c i e t y a n d M u l t i c u l t u r a l S k i l l l	Envi ron men t and Sust aina bilit y	M o r al , a n d E t h ic al A w a r e s s	Indi vid ual and Tea mw ork Skil ls	C o m m u n i c a ti o n S k il 1 s	Proj ect Man age men t and Fina nce	Self - Dir ecte d and Life Lon g Lea rnin g	P S O 1	P S O 2	Andhra Prad PS O 3
Outcome 1	3	2	2	_	-	1 S -					-	2	2	2	1
							-	-	-	-					
Outcome 2	3	3	2	-	-	-	•	-	-	-	-	2	3	3	2
Outcome 3	3	3	2	2	-	-	-	-	-	-	-	2	3	3	2
Outcome 4	3	3	2	2	-	-	-	-	-	-	-	2	3	1	2
Course Average	3	3	2	2	-	-	-	-	-	-	-	2	3	3	2

Unit No.	Unit Name	Required Contact Hours	CLOs Address ed	Reference s Used
Unit 1	Introduction	9		
	Overview of the DBMS, Representing data elements	1	1	1
	Introduction to DBMS implementation using Megatron 2000 database system.	1	1	1
	Data storage using main memory and hard disks, Disk failures	1	1	1
	Recovery from disk crashes	2	1	1,2

				And
	Representing data elements such as record address, block, variable length	2	1	1
	data and solve various numericVariable length data and records, Record	1	1	1
	modifications, solve various numeric			
	Doubt clearing class.	1	1	1
Unit 2	Index Structure	9		
	Index structures: Indexes on sequential files	1	2	1
	Secondary indexes	1	2	1,2
	B-Trees Concept, B-Tree examples, solving numeric	2	2	1,2
	Hash tables concepts	2	1,2	2
	Multidimensional indexes: Hash and tree like structures for multidimensional data	2	1,2	1,2
	Bitmap indexes, solve numeric and doubt clearing class	1	1,2	1
Unit 3	Query Execution	9		
	Query execution: Algebra for queries	1	2	1
	Introduction to Physical-Query-Plan Operators	1	2	1,3
	One-Pass Algorithms for Database Operations	1	2	1
	Nested-Loop Joins	1	2	1
	Two-Pass Algorithms Based on Sorting. Example discussion.	1	2	2
	Index-Based Algorithms ,Buffer Management. More example	2	2	1
	Algorithms Using More Than Two Passes. Solving numeric	1	2	1
	Parallel Algorithms for Relational Operations.	1	2,3	1
Unit 4	Query compiler	9		
	The query compiler: Parsing	2	2	1,2
	Algebraic Laws for Improving Query Plans	2	2	1
	From Parse Trees to Logical Query Plans	1	2	1
	Estimating the Cost of Operations	1	2	1(other),1
	Introduction to Cost-Based Plan Selection	1	2	2(other),1
	Choosing an Order for Joins	1	2	3(other),2
	Completing the Physical-Query-Plan Selection	1	2	1
Unit 5	Concurrency Control	9		
	Concurrency control: Conflict- Serializability	1	3	1
	View serializability	1	3	1

Locking Systems with Several Lock Modes	1	3	1
An Architecture for a Locking Scheduler	1	3,4	1
Concurrency control by timestamps and validation	1	3,4	1
Transactions that Read Uncommitted Data	1	3,4	1
Coping with system failures: Undo/Redo logging, Examples on Undo/Redo, view serializability	2	3,4	2 (other)
Protecting media failures, Numeric solved, Doubt clearing.	1	3,4	2
Total Contact Hours		45	

- 1. Garcia-Molina, H. (2008). Database System Implementation. Pearson Education India.
- 2. Garcia-Molina, H. (2008). Database systems: the complete book. Pearson Education India. Other Resources
- 1. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., & Sudarshan, S. (2002, February). Keyword searching and browsing in databases using BANKS. In Proceedings 18th international conference on data engineering (pp. 431-440). IEEE.
- 2. Srivastava, D., Stuckey, P. J., & Sudarshan, S. (2000). U.S. Patent No. 6,032,144. Washington, DC: U.S. Patent and Trademark Office.
- 3. Shanbhag, A., & Sudarshan, S. (2014). Optimizing join enumeration in transformation-based query optimizers. Proceedings of the VLDB Endowment, 7(12), 1243-1254.

	0	Cont	inuous Learnii	ng Assessments	(50%)	End
Bloom's Level of Cognitive Task		CLA-1 (15%)	Mid-1 (20%)	CLA-2 (5%)	CLA-3 (10%)	Semester Exam (50%)
		Th	Th	Th	Th	Th
Level 1	Remember	70%	60%	70%	40%	70%
Level I	Understand				4070	7070
Level 2	Apply	30%	40%	30%	60%	30%
Level 2	Analyse	3070				3070
Level 3	Evaluate					
Level 5	Create					
Total		100%	100%	100%	100%	100%

Learning Assessment

Fog	Comp	uting
-----	------	-------

Course Code	CSE 433	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3
Pre-Requisite	CSE 301	Co-Requisite		Progressive				
Course(s)	CSE 501	Course(s)		Course(s)				
Course		Professional /						
Offering	CSE	Licensing	OpenEdge, IEEE 1934, IETF					
Department		Standards						

Course Objectives

Objective 1: To understand the limitations of today's Cloud computing models which are not designed for the volume, variety, and velocity of data generated by billions of Internet of Things (IoT) devices.

Objective 2: To understand the features of Edge Computing architecture and analyse business models that address the challenges of resource management and optimization.

Objective 3: To familiarize with Edge applications that monitor real-time data from networkconnected things and initiating action involving machine-to-machine (M2M) communication.

Objective 4: To understand how developers, write IoT applications for Edge Computing nodes that are closest to the network edge and ingest the data from IoT devices.

Objective 5: To understand how Edge Nodes, extend the Cloud to the Network Edge through the Case studies for Response time, Data storage time, coverage area, and kinds of applications.

	At the end of the course the learner will be able to		Expected Proficiency Percentage	Expected Attainment Percentage
CO 1	Demonstrate various architectural models and design issues in Edge Computing.	2	65%	60%
CO 2	Learn and apply various Edge+IoT communication paradigms and Edge+Edge Middleware.	4	65%	60%
CO 3	Identify and mitigate Resource management and optimization challenges of Edge Computing model.	3	65%	60%
CO 4	Develop efficient models for deployment and dimensioning of edge networks	2	65%	60%

Course Outcomes (COs)

CO 5	Will gain hands on experience with	6	65%	60%
	different case studies and simulation			
	frameworks for real-life Edge			
	applications.			

				I	Program Learning Outcomes (PLO)										
									In		Pr	Se	PS	PS	PS
		Δ	А	М	So	En	М	di		oj	lf-	0	0	0	
			De	na	od	cie	vir	or	vi		ect	Di	1	2	3
	En		sig	lys	er	ty	on	al,	du	Co	Μ	re			
	gi	Pr	n	is,	n	an	m	an	al	m	an	cte			
	ne	ob	an	De	То	d	en	d	an	m	ag	d			
CLOs	eri	le	d Da	sig	ol	M	t	Et	d Te	un	e	an			
CLUS	ng K	m A	De	n	an	ult	an d	hi	Te	ica tio	m	d Li			
	no K	A na	ve lo	an	d	ic ult	u Su	cal	a m	n	en t	fe			
	wl	lys	p	d	IC	ur	sta	А	W	Sk	an	Lo			
	ed	is	m P	Re	Т	al	in	wa	or	ill	d	ng			
	ge	10	en	se	Us	Sk	ab	re	k	s	Fi	Le			
	U		t	ar	ag	ill	ilit	ne	Sk		na	ar			
				ch	e	S	у	SS	ill		nc	ni			
									S		e	ng			
Outcome 1	3	3	3	2	1							3	3	1	2
Outcome 2	3	3	3	2	2	1			3			2	3	2	2
Outcome 3	3	3	3	2	2				3			3	3	2	2
Outcome 4	3	3	3	3	2	1			3			2	3	2	2
Outcome 5	3	3	3	2	2	1			2			2	3	2	2
Course Average	3	3	3	2	2	1			3			2	3	2	2

Unit No.	Unit Name	Required	CLOs	References
		Contact Hours	Addressed	Used
	T (1)			
UNIT 1	Introduction	9		
	Cloud Computing Fundamentals	1	1,2	1,2
	Limitation of Cloud computing, the	1	1,2	1,2
	Needs of Edge Computing			
	Edge definition, Characteristic Features	1	1,2	1,2
	of Edge computing – SCALE			
	Architectural differences between	1	1,2	1,2
	Cloud and Edge computing			
	Edge Computing Models (Service	2	1,2	1,2,3
	models)			
	Edge and Edge Illustrative Use Cases	2	1,2	1,2,3

	Opportunities and Challenges	1	1,2	1,2,3
UNIT 2	Disruptive Technology Enablers for	9		
UNIT 2	Edge Computing	9		
	Edge Computing for IoT: Definition and Requirements	1	1,2	1,2
	OpenEdge	2	1,2	1,2
	Communication technologies for edge computing- 4G, 5G, 6LoPAN, DSRC	2	1,2	1,2
	Protocols and Algorithms for edge communication	2	1,2	1,2
	Software defined networking for edge computing	1	1,2	3
	Caching and Networking in 5G edge networks	1	1,2	3
UNIT 3	Middleware for Edge and Edge Computing	9		
	Need for Edge and Edge Computing Middleware	1	2,3	1,3
	Design goals	1	2,3	1,3
	Quality of Service (QoS) in edge computing	2	2,3	1,2,3
	Authentication. privacy and security of edge nodes	2	2,3	1
	Data management in edge computing	1	2,3	1
	Challenges and research prospects	2	2,3	1,2,3
UNIT 4	Deployment and Dimensioning of Edge Networks	9		
	Introduction to Edge node placement problem	1	3,4	1,2
	Optimization models for edge node placement problem	2	3,4	1,2
	Resource provisioning in edge networks	2	3,4	1,2,3
	Mobility models for edge nodes	2	3,4	2
	Edge orchestration	2	3,4	1
UNIT5	Modeling and Simulation of Distributed Edge Environment	9		
	Introduction to modeling and simulation	2	2,3,5	1
	EdgeNetSim++: Architecture	1	2,3,5	1
	EdgeNetSim++: Installation and Environment Setup	1	2,3,5	1

OMNeT++ Installation and sample	1	2,3,5	1
programs			
Sample Edge Simulation	2	2,3,5	1
Advanced topics in edge research	2 2,3,5 1,2,3		1,2,3
Total Contact Hours	45		

- 1 Buyya, R., & Srirama, S. N. (Eds.). (2019). Fog and edge computing: principles and paradigms. John Wiley & Sons.
- 2 Mahmood, Z. (Ed.). (2018). Fog computing: concepts, frameworks and technologies. Springer.
- 3 Abbas, A., Khan, S. U., & Zomaya, A. Y. (Eds.). (2020). Fog computing: theory and practice. John Wiley & Sons.

Other Resources

1 Articles from IEEE, ACM, Springer and Elsevier

Learning Assessment

		Cor	End			
Bloom's Level of Cognitive Task		CLA-1 (10%) Mid-1 (20%)		CLA-2 (10%)	CLA-3 (10%)	Semester Exam (50%)
		Th	Th	Th	Th	Th
Level 1	Remember	40%	60%	20%		30%
Level I	Understand					
Level 2	Apply	60%	40%	50%	60%	50%
Level 2	Analyse					
Level 3	Evaluate			30%	40%	20%
Level 5	Create					
Total		100%	100%	100%	100%	100%

Parallel Algorithms

Course Code	CSE 434	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3
Pre-Requisite Course(s)	CSE 207	Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards		IEEE				

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To understand the fundamental concepts of parallel processing, interconnection networks, parallel computation models.

- **Objective 2:** To design, analyse, and implement the modern parallel algorithms techniques.
- **Objective 3:** To measure the performance of various parallel algorithms and comparison with sequential algorithms
- **Objective 4:** To learn various problem-solving strategies to achieve parallelism.

	At the end of the course the learner will be able to	Bloo m's Level	Expected Proficien cy Percenta ge	Expected Attainme nt Percentag e
Outcome 1	Illustrate the requirements of parallel programming systems and its facilitation in concurrent systems	2	65%	60%
Outcome 2	Analyse the strengths and limitations of parallel computing approaches for problem solving	4	65%	60%
Outcome 3	Compute the performance of parallel algorithms	3	65%	60%
Outcome 4	Design the parallel searching and sorting algorithms	2	65%	60%
Outcome 5	Evaluate the differences among parallel algorithms solving the same problem and defend the best approach.	5	65%	60%

				I	Progr	am L	earn	ing C	Jutco	mes (PLO)			
CLOs	En gi ne eri ng K no wl ed ge	Pr ob le m A na lys is	De sig n an d De ve lo p m en t	A na lys is, De sig n an d Re se ar ch	M od er n To ol an d IC T Us ag e	So cie ty an d M ult ic ult ur al Sk ill s	En vir on m en t an d Su sta in ab ilit y	M or al, an d Et hi cal A wa re ne ss	In di vi du al an d Te a m w or k Sk ill s	Co m un ica tio n Sk ill s	Pr oj ect M an ag e m en t an d Fi na nc e	Se lf- Di re cte d an d Li fe Lo ng Le ar ni ng	PS O 1	PS O 2	PS O 3
Outcome 1	3	3	3	2	1							3	3	1	2
Outcome 2	3	3	3	2	2	1			3			2	3	2	2
Outcome 3	3	3	3	2	2				3			3	3	2	2
Outcome 4	3	3	3	3	2	1			3			2	3	2	2
Outcome 5	3	3	3	2	2	1			2			2	3	2	2
Course Average	3	3	3	2	2	1			3			2	3	2	2

Unit	Unit Name	Required	CLOs	References
No.		Contact	Addressed	Used
		Hours		
UNIT	Introduction	12		
1				
	Sequential model need of alternative model	1	1,2	3,4
	Parallel computational models: PRAM,	1	1,2	3,4
	LMCC			
	Parallel computational models: Hypercube,	2	1,2	3,4
	Cube Connected Cycle			
	Parallel computational models: Butterfly,	2	1,2	3,4
	Perfect Shuffle Computers			
	Parallel computational models: Tree model,	2	1,2	3,4
	Pyramid model			
	Fully Connected model	1	1,2	3,4
	PRAM-CREW, EREW models	2	1,2	3,4
	Simulation of one model from another one	1	1,2	3,4

UNIT 2	Performance of Parallel Algorithms	8		
	Performance measures of parallel algorithms	2	2,3	1,2
	Speed-up and efficiency of parallel algorithms	2	2,3	1,2
	Cost-optimality	2	2,3	1,2
	Example of cost-optimal algorithms: summation	1	2,3	1,2
	Example of cost-optimal algorithms: min/max	1	2,3	1,2
UNIT 3	Parallel Sorting Networks	8		
	Parallel Sorting Networks	1	4,5	2,3
	Parallel Merging Algorithms on CREW	1	4,5	2,3
	Parallel Merging Algorithms on EREW	1	4,5	2,3
	Parallel Merging Algorithms on MCC	1	4,5	2,3
	Parallel Sorting Networks on CREW	1	4,5	2,3
	Parallel Sorting Networks on EREW	1	4,5	2,3
	Parallel Sorting Networks on MCC	1	4,5	2,3
	Linear array	1	4,5	2,3
UNIT 4	Parallel Searching Algorithm	9		
	Parallel Searching Algorithms	1	4,5	2,3
	Kth element in X+Y on PRAM	2	4,5	2,3
	Parallel matrix transportation	2	4,5	2,3
	Multiplication algorithm on PRAM	1	4,5	2,3
	Multiplication algorithm on MCC	1	4,5	2,3
	Vector-Matrix multiplication	1	4,5	2,3
	Solution of linear equation, root finding	1	4,5	2,3
UNIT 5	Graph Algorithms	8		
	Connected graphs	1	1	4
	Search and traversal	1	1	4
	Combinatorial algorithms-permutation	2	1	4
	Combinatorial algorithms- combinations	2	1	4
	Derangements	2	1	4
	Total Contact Hours		45	•

- 1 Quinn, M. J. (1987). Designing efficient algorithms for parallel computers. McGraw-Hill, Inc..
- 2 Akl, S. G. (1989). The design and analysis of parallel algorithms. Prentice-Hall, Inc..
- 3 Rajasekaran, S., & Reif, J. (Eds.). (2007). Handbook of parallel computing: models, algorithms and applications. CRC press.
- 4 Pacheco, P. (2011). An introduction to parallel programming. Elsevier.

Other Resources

1. Leighton, F. T. (2014). Introduction to parallel algorithms and architectures: Arraystrees- hypercubes. Elsevier.

			Cont	inuous	Learni	ng Asse	essment	s (50%))	End	
	Bloom's Level of Cognitive Task		CLA-1 (10%)		Mid-1 (20%)		CLA-2 (10%)		A-3)%)	Ex	ester am 9%)
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Lovel 1	Remember	40		60%		20%				30%	
Level 1 Unders	Understand	%									
Level 2	Apply	60		40%		50%		60%		50%	
Level 2	Analyse	%									
Level 3	Evaluate					30%		40%		20%	
Level 5	Create										
	·			100		100		100		100	
]]	Total			%		%		%		%	
		%									

Learning Assessment

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

		Web Serv	rices					
Course Code	CSE 435	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3
Pre- Requisite Course(s)	CSE 210	Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards		-				

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Learn the overview of service oriented architecture, service roles and its architectural stack.

Objective 2: Comprehend web services and the various ways to implement the web services.

- **Objective 3:** Gain knowledge for the design and implementation Restful Web Services.
- **Objective 4:** understand the composition of various services.
- **Objective 5:** Gain knowledge on Service Component Architecture.

	At the end of the course the learner will be able to	Bloom 's Level	Expected Proficien cy Percenta ge	Expected Attainme nt Percenta ge
Outcome 1	Describe service-oriented architecture and service roles in service-oriented architecture	2	70%	65%
Outcome 2	Implement web services	3	70%	65%
Outcome 3	Demonstrate Restful Services	3	70%	65%
Outcome 4	Compare and Contrast web service compositions	3	70%	65%
Outcome 5	Illustrate Service Component Architecture and its importance.	2	70%	65%

Course Outcomes / Course Learning Outcomes (CLOs)

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

				F	rogr	am L	earn	ing O	utco	mes (PLO)			
CLOs	E n g i n e e r i n g K n o w l e d g e	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	$\begin{array}{c} \mathbf{S} \\ \mathbf{S} \\ \mathbf{o} \\ \mathbf{c} \\ \mathbf{i} \\ \mathbf{e} \\ \mathbf{t} \\ \mathbf{y} \\ \mathbf{a} \\ \mathbf{n} \\ \mathbf{d} \\ \mathbf{M} \\ \mathbf{u} \\ \mathbf{l} \\ \mathbf{t} \\ \mathbf{i} \\ \mathbf{c} \\ \mathbf{u} \\ \mathbf{l} \\ \mathbf{t} \\ \mathbf{u} \\ \mathbf{r} \\ \mathbf{a} \\ \mathbf{l} \\ \mathbf{S} \\ \mathbf{k} \\ \mathbf{i} \\ \mathbf{l} \\ \mathbf{s} \end{array}$	E n v i r o n m e n t a n d S u s t a i n d S u s t a i i r o n t a n t y i i r o n t i r o n t y i i r o n t i y i i i y i i i i y i i i i i i i i	M o r a l , a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k i l s	C o m u c a t i o n S k i l s	PLO P r o j e c t M a n c e n t a n d F i n a n c e	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f - D i r e c t e n g L e a r n g	P S O 1	P S O 2	P S O 3

Outcome 1	2									1	3	2
Outcome 2	3	3	3	2	3				1	3	3	2
Outcome 3	3	3	3	3	3				1	3	3	2
Outcome 4	3	2	2	2	3				1	3	3	2
Outcome 5	3	2	2	3	3				1	3	3	2
Course Average	3	2	2	2	2				1	3	3	2

		<u>р</u> ,		
Unit No.	Unit Name	Requir ed Conta	CLOs Addres	Referen ces
110.		ct	sed	Used
		Hours		
Unit I	Introduction to Service Oriented Architecture	8		
	Basics of service-oriented architecture (SAO)	1	1	1
	Goals of service-oriented architecture	1	1	1
	Introduction to services	1	1	1
	Service roles and interaction in the Service	1	1	1
	Oriented Architecture	1	1	1
	The SOA Architectural Stack	1	1	1
	Service Composition and Data Flow	1	1	1
	Data-Flow Paradigms	1	1	1
	Composition Techniques	1	1	1
Unit II	Web Services	10		
	Introduction to web services	1	2	1, 2
	History of web services	1	2	1
	Basics of Simple Object Access Protocol (SOAP)	2	2	1, 2
	Web Services Description Language (WSDL)	2	2	1, 2
	WSDL Main Elements	1	2	1
	Message Communication Model in SOAP/WSDL	1	2	1
	Develop simple web services	2	2	1
Unit III	Web Services: REST or Restful Services	12		1
	Introduction to REST	1	3	1
	REST Design Principles	2	3	1, 2
	Web API Design for RESTful Services	2	3	1, 2
	Building REST Web Services	2	3	1, 2
	Data Access as a Service and implementing data services	1	3	1, 2
	XML Transformation and Query Techniques	2	3	1
	Consuming data via direct data access to the sources	2	3	1
Unit IV	Web Service Composition	8		
	Introduction to web service composition	1	4	1
	•		•	•

1	4	1
		1
1	4	1
1	4	1
1	4	1
1	4	1
1	4	1
1	4	1
7		
1	5	1
1	5	1
1	5	1
1	5	1
1	5	1
1	5	1
1	5	1
	45	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

- 1. Paik, H. Y., Lemos, A. L., Barukh, M. C., Benatallah, B., & Natarajan, A. (2017). Web service implementation and composition techniques (Vol. 256, pp. 149-158). Springer International Publishing.
- 2. Kalin, M. (2013). Java Web Services. " O'Reilly Media, Inc.".

rning Assessme	nt									
		Con	1	End						
Bloom's Level of Cognitive Task		CLA-1 (10%)		Mid-1 (20%)		CLA-2 (10%)			Semester Exam (50%)	
		Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Remember	400/		500/		200/		30		200/	
Understand	40%		5070		5070		%		5070	
Apply	60%		50%		70%		70		70%	
Analyse	00%				70%	70%	%		70%	
Evaluate										
Create										
Total	100 %		100%		100%		100 %		100%	
	m's Level of nitive Task Remember Understand Apply Analyse Evaluate Create	nitive Task (10 Th Remember Understand 40% Apply 60% Evaluate Create 100	Conm's Level of nitive TaskCLA-1 (10%)ThPracRemember Understand40%Apply Analyse60%Evaluate Create100	Continuous Im's Level of nitive TaskCLA-1 (10%)Mid-1 (ThPracThRemember Understand40%50%Apply Analyse60%50%Evaluate Create100100%	Continuous Learninm's Level of nitive TaskCLA-1 (10%)Mid-1 (20%)ThPracMid-1 (20%)ThPracThPracRemember Understand40%50%50%Apply Analyse60%50%50%Evaluate Create100100%	Continuous Learning Assessm's Level of nitive TaskCLA-1 (10%) Mid-1 (20%)CLA (10%)Remember Understand40%50%30%Apply Analyse60%50%70%Evaluate Create100100%100%	Continuous Learning Assessmentsm's Level of nitive TaskCLA-1 (10%) Mid-1 (20%)CLA-2 (10%) ThPracThPracThPracRemember Understand40%50%30%30%Apply Analyse60%50%70%70%Evaluate Create100100%100%	Continuous Learning Assessments (50%)m's Level of nitive TaskCLA-1 (10%)Mid-1 (20%)CLA-2 (10%)C (1ThPracThPracThPracThRemember Understand 40% 50% 30% 30 % 30 %Apply Evaluate Create 60% 50% 70% 70 %Total 100 100% 100% 100% 100%	Continuous Learning Assessments (50%)m's Level of nitive TaskCLA-1 (10%)Mid-1 (20%)CLA-2 (10%)CLA-3 (10%)ThPracThPracThPracRemember Understand40%50%30%30 %30 %Apply Evaluate Create60%50%70%70 %Total100100%100%100	Continuous Learning Assessments (50%)Enm's Level of nitive TaskCLA-1 (10%)Mid-1 (20%)CLA-2 (10%)CLA-3 (10%)Seme Exam (ThRemember Understand40%50%30%30 30% 30 $\%$ 30%Apply Evaluate Create60%50%70%70 $\%$ 70%Total100100%100%100%100%

Advances in Data Mining

Course Code	CSE 436	Course Category			3	0	0	3
Pre- Requisite Course(s)	CSE 209	Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Introduce the basic concepts of data mining techniques

Objective 2: Explain the concepts of association rule mining and frequent pattern mining, classification and clustering

Objective 3: Discuss and analyse various classification algorithms, clustering algorithms and methods for outlier analysis.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficien cy Percentag e	Expected Attainme nt Percentag e
Outcome 1	Understand advanced data mining algorithms to solve the given real- world problems.	2	75%	70%
Outcome 2	Identify and apply appropriate data mining algorithms to solve the given real-world problems.	3	75%	70%
Outcome 3	Compare and evaluate classification and prediction methods.	5	70%	65%
Outcome 4	Compare and evaluate clustering methods.	5	70%	65%
Outcome 5	Compare and evaluate association rule mining methods.	5	70%	65%
Outcome 6	Compare and evaluate outlier detection methods.	5	70%	65%

Course Articu				(020			Learr								
CLOs	E n g i n e e r i n g K n o W l e d g e	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S o c i e t y a n d M u l t i c u l t u l t u l t s s	E n v i r o n m e n t a n d S u s t a i n d S u s t a i i r o n m e n t a n d S u s t t a i i r o n t y	M o r a l, a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k i l l s	C o m m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a c e	S el f- D ir e ct e d a n d L if e L o n g L e ar nin g	P S O 1	P S O 2	P S O 3
Outcome 1	3	3													
Outcome 2	2	2	2	2								2	2	2	2
Outcome 3	2	2	3	3								2	3	2	2
Outcome 4	2	2	3	3								2	3	2	2
Outcome 5	2	2	3	3								2	3	2	2
Outcome 6	2	2	3	3								2	3	2	2
Course Average	2	2	3	3								2	3	2	2

Unit No.	Unit Name	Required Contact Hours	CLOs Addresse d	References Used
Unit 1	Introduction	7		

	What is Data Mining, Compiling need of Data Mining, Business Data Mining	1	1,2	1
	Data Mining Process, CRISP-DM, Business Understanding, Data Understanding, Data Preparation, Modelling, Evaluation, Deployment.	3	1,2	1, 2
	SEMMA, Steps in SEMMA Process, Comparison of CRISP & SEMMA, Handling Data	3	2	1, 2
Unit 2	Association Rules in Knowledge Discovery	8		
	Introduction, Market-Basket Analysis	1	1	1
	Mining Frequent Patterns, Associations, and Correlations, Apriori Algorithm	1	1	1
	Pattern-Growth Approach for Mining Frequent Itemsets	1	1	1
	Mining Frequent Itemsets using Vertical Data Format, Mining Closed and Max Patterns	1	2, 3	1
	PatternMininginMultilevel,Multidimensional Space	1	2, 3	1
	Constraint-Based Frequent Pattern Mining	1	2, 3	1
	Mining High-Dimensional Data and Colossal Patterns	1	2, 3	1
	Mining Compressed or Approximate Patterns	1	2, 3	1
Unit 3	Classification	10		
	Basic Concepts, Decision Tree Induction	2	1, 4	1
	Bayes Classification Methods: Bayes' Theorem, Na [¨] ive Bayesian Classification, Rule-Based Classification	2	1, 4	1
	Model Evaluation and Selection	1	1, 4	1
	Bagging, Boosting and AdaBoost, Random Forests	2	1, 4	1, 3
	Improving Classification Accuracy of Class- Imbalanced Data	1	1,4	1
	Genetic Algorithms, Rough Set Approach, Fuzzy Set Approaches	2	1,4	1, 2
Unit 4	Cluster Analysis	10		
	Introduction, k-Means, k-Medoids	2	1, 5	1
	Agglomerative versus Divisive Hierarchical Clustering, Distance Measures in Algorithmic Methods	2	1, 5	1
	Multiphase Hierarchical Clustering Using Clustering, Feature Trees	2	1, 5	1

	MultiphaseHierarchicalClusteringUsingDynamicModelling,ProbabilisticHierarchicalClustering	2	1, 5	1
	Density-Based Methods, Grid-Based Methods	2	1, 5	1
Unit 5	Outlier Analysis	10		
	Introduction, Outlier Detection Methods: Supervised, Semi-Supervised, and Unsupervised Methods	3	1, 6	1
	Outlier Detection Methods: Statistical Methods, Proximity-Based Methods, and Clustering-Based Methods	3	1, 6	1
	Mining Contextual and Collective Outliers, Outlier Detection in High-Dimensional Data	2	1, 6	1
	Mining Complex Data Types, Data Mining Applications, Social Impacts of Data Mining.	2	1, 6	1, 2, 3
	Total Contact Hours		45	

Mining, W. I. D. (2006). Data mining: Concepts and techniques. Morgan Kaufinann, 10(559-569), 4.
 Olson, D. L., & Delen, D. (2008). Advanced data mining techniques. Springer Science & Business Media.

3. Aggarwal, C. C. (2015). Data mining: the textbook (Vol. 1, p. 1). New York: springer.

Learning Assessment

Bloom	Bloom's Level of		Continuous Learning Assessments (50%)											
Cognitive Task		CLA-1 (10%)		Mid-1	Mid-1 (15%)		CLA-2 (10%)		A-3 1%)					
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac			
Level 1	Remember	20%	-	10%	-	-	-	10%	-	10%	-			
Level I	Understand													
Level 2	Apply	40%	-	50%	-	-	-	50%	-	50%	-			
Level 2	Analyse													
Level 3	Evaluate	40%	-	40%	-	100	-	40%	-	40%	-			
Level 5	Create					%								
Ч	Cotol	100		100		100		100		100				
	Total			%		%		%		%				

	Social Network Analysis												
Course Code	CSE 437	Course Category	Technical Elective (TE)	L-T-P-C		0	0	3					
Pre- Requisite Course(s)		Co-Requisite Course(s)	Nil		Progressive Course(s)		N	ïl					
Course Offering Department	CSE	Professional / Licensing Standards		Nil									

Social Network Analysis

Course Objectives

Objective 1: To give details of the key mathematical concepts that characterize a network **Objective 2:** To explain different analytical tasks on social graphs such as centrality, link prediction and community detection.

Objective 3: To demonstrate computational tools for social networks tasks in the real world. **Objective 4:** To Examine social networks analysis using case studies.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
CO 1	Understand of the key mathematical concepts that characterize a network	2	65%	65%
CO 2	Develop network models with various topological structures using the main algorithms for graph analysis and implementation.	3	65%	65%
CO 3	Demonstrate practical knowledge of analytical and computational tools for complex networks in the real world.	3	65%	65%
CO 4	Demonstrate knowledge of recent research in the area and exhibit technical writing and presentation skills	3	65%	65%

Course Outcomes (COs)

					Progr										
CLOs	EngineeringKnowledge	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S = C = C = C = C = C = C = C = C = C =	E n v i r o n m e n t a n d S u s t a i n d S u s t a i i r o n m e n t a s t i r o n t y i r o n t t y i i r o n t t y	M o r a l , a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k i l s	C o m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a r o j e c t M a n c t n e c t M a n e c t m e c t n e c t c t c t c f e c c t c f e c c c t c c c c c c c c c c c c c c c	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f e c t e a r n g L e a r n g	P S O 1	P S O 2	P S O 3
Outcome 1	2	2	1	1	1								1	1	1
Outcome 2	3	3	3	3	3						2	3	3	3	3
Outcome 3	3	3	3	3	3						2	3	3	3	3
Outcome 4	3	3	3	3	3						2	3	3	3	3
Course	3	3	3	3	3						2	3	3	3	3
Average															

Unit	Unit Name	Required	CLOs	Reference
No.		Contact	Addresse	s Used
		Hours	d	
UNIT 1	UNIT I: Fundamentals of Network Science	7		

		-	1 4 5 h 1	Andhra Pradesh
	Networks in the real world: Social networks,		1	
	Information networks, Technological networks,	2		1, 3
	Biological networks			
	The large-scale structure of networks:		1	
	Components, Shortest paths and small-world	1		1, 3
	effect,			
	Degree distributions, Power laws and scale-free		1	
	networks, Six degrees of separation, Random	1		1, 3
	graphs models of network formation.			
	Mathematics of networks: Networks and their	1	1	1
	representation	1		1
	Types of networks: Weighted, directed and		1	
	hypergraphs, The adjacency, Laplacian, and	2		1
	incidence matrices Degree, paths, components,	2		1
	independent paths, connectivity, and cut sets.			
UNIT 2	Centrality measures	10		
	Degree centrality, Closeness centrality	2	2	1, 3
	Homophily, Transitivity and Preferential	2	2	1.2
	attachment	2		1, 3
	Clustering coefficient and Assortative mixing	1	2	1, 3
	Eigenvector centrality, Katz centrality	2	2	1, 3
	Betweenness centrality Page rank, Hubs and	-	2	
	Authorities	3		1, 3
UNIT 3	Community Detection in Social Networks	12		
	Detecting communities in social networks,		2	
	Definition of community, Applications of	3		1, 2, 3
	community detection			
	Algorithms for community detection: The	-	2	1.2.2
	Kernighan-Lin Algorithm	2		1, 2, 3
	Agglomerative/Divisive Algorithms, Markov		2	1.0.0
	Clustering	2		1, 2, 3
	Multi-level Graph Partitioning Spectral		2	
	Algorithms	2		1, 2, 3
	Modularity Maximization Other Approaches	2	2	1, 2
	Evaluating communities	1	2	1
UNIT 4	Predictive Analytics in Social Networks	9		-
UT III I	Link prediction problem, Link prediction	,	3	
	measures	1	5	1
	Feature based Link Prediction, Evaluation Node	2	3	1
	classification problem Node classification:		3	1
	Problem definition and applications	2	5	1
	Iterative classification methods; Label		3	
	propagation method; Graph regularization	1	5	1
	method; Evaluation	1		1
		1	3	1
	Motif analysis: Definition of network motifs	1	3	1

	Triangle counting and enumeration algorithms	1	3	1
	Applications of network motifs	1	3	1
UNIT 5	5 Current Research in Social Networks			
	Social Influence Analysis	2	4	1, 3
	privacy in social networks	2	4	1, 3
	Integrating sensors and social networks	1	4	1, 3
	Multimedia information networks in social media	2	4	1, 3
	and social tagging and applications.			1, 5
	Total Hours	45		

- 1. Newman, M. E. J. (2010). Networks: an introduction. Oxford; New York: Oxford University Press.
- 2. Aggarwal, C. C. (2011). An introduction to social network data analytics. In Social network data analytics (pp. 1-15). Springer, Boston, MA.
- 3. Barabási, A. L. (2013). Network science. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1987), 20120375

		Con	End			
Bloom's Level of Cognitive Task		CLA-1 (10%)	Mid-1 (20%)	CLA-2 (10%)	CLA-3 (10%)	Semester Assessments (50%)
Level 1	Remember	member 30% 20% 30% 0%		30%		
Level I	Understand					30%
Level 2	Apply	70%	80%	70%	100%	70%
Level 2	Analyse					7070
Level 3	Evaluate					
Level J	Create					
	Total	100%	100%	100%	100%	100%

Recommender Sy	stems
----------------	-------

Course Code	CSE 438	Course Category		L-T/D-P/Pr-C	3	0	0	3
Pre-Requisite	Linear	Co-Requisite	Nil	Progressive		N		
Course(s)	Algebra	Course(s)		Course(s)		Nil		
Course Offering		Professional /						
Course Offering	UNE CON	Licensing	Nil					
Department		Standards						

Course Objectives

Objective 1: To understand principles behind recommender systems.

Objective 2: To design suitable models for applications in various domains.

Objective 3: To apply the recommendation models such as content-based, collaborative filtering to real-world applications.

Objective 4: Evaluate the performance of various recommendation models for chosen application.

Course Outcomes (COs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
CO 1	Understand principles behind recommender systems.	3	65%	65%
CO 2	Design suitable models for applications in various domains	3	65%	65%
CO 3	Apply the recommendation models such as content-based, collaborative filtering to real- world applications.	3	65%	65%
CO 4	Evaluate the performance of various recommendation models for chosen application.	3	65%	65%

Unit No.	Unit Name	Required	CLOs	References
		Contact	Addressed	Used
		Hours		
UNIT 1	INTRODUCTION	6		
	Introduction to Recommender	1	1	1
	Systems,			
	Applications of Recommender	1		1
	Systems, Goals of			
	Recommender Systems			

				An
	Basic Models of Recommender Systems-I	1	1	1
	Basic Models of Recommender Systems-II	1	1	1
	Domain-Specific Challenges in	1	1	1
	Recommender Systems	1	1	1
	Exploring Datasets and domains	1	1	1
UNIT 2	Non-Personalised Recommender	9		2
	Systems	2	2	2
	Non personalised Recommendation	2	2	2
	Coding demo of Summary statistics based RS	1	2	2
	Guided Activity - 1: Implementation of summary statistics based RS	1	2	3
	Activity - 1: Implementing summary statistics based RS for the dataset of chosen domain	1	2	2
	Guided Activity - 2: Implementation of demographics based RS	1	2	3
	Guided Activity - 3: Implementation of product association based RS	1	2	3
	Activity - 2: Implementation of	2	2	2
	demographics based and product			
	association based RS for the dataset			
	of chosen domain			
UNIT-III	Neighborhood-Based Recommender Systems	13		
	Key Properties of Ratings Matrices,	1	3	4
	Ratings, mean-centered ratings			
	Introduction to neighborhood-based recommendation	1	3	4
	Variations of neighborhood-based CF solutions	1	3	4
	User-based neighborhod models	1	3	4
	Guided Activity - user-based CF	1	3	6
	Tutorial-7	1	3	6
	Item-based neighborhod models	1	3	4
	Strengths and limitations of	1	3	4
	neighborhood-based CF models		-	
	Variations of neighborhood-based	1	3	4
	CF solutions: Dimensinality reduction			
		1	3	5
	Singular Value Decomposition and Principle Component Analysis			
	Bias in the recommendation models, problems and solutions	1	3	5
	Graph Models for neighborhood-	2	3	7
	based CF			

	Goal of evaluation	1	4	3
	Evaluation taxonomy	1	4	3
	Accuracy and Error metrics - I	1	4	3
	Accuracy and Error metrics - II	1	4	3
	Tutorial	1	4	4
	Decision Support metrics	1	4	4
	Tutorial	1	4	4
	Rank-aware Top-n metrics - I	1	4	4
	Rank-aware Top-n metrics - II		4	4
	Tutorial	1	4	4
UNIT-V	Model-Based Collaborative Filtering	6		
	Geometric Intuition for Latent Factor	1	3	6
	Models			
	Stochastic Gradient Descent	1	3	6
	Guided Activity	1	3	7
	Demo of SVD on toy Movielens	1	3	7
	dataset			
	CLA 3 evaluation	2		
	Total Contact Hours		45	

Text Books:

- 1. C.C. Aggarwal, Recommender Systems: The Textbook, Springer, 2016.
- 2. F. Ricci, L Rokach, B. Shapira and P.B. Kantor, *Recommender systems handbook*, Springer 2010.
- 3. Falk, Kim. Practical recommender systems. Simon and Schuster, 2019.
- 4. Michael Schrage. Recommendation Engines.2020.
- 5. Oliver Theobald. Machine Learning-Make your own Recommender System. 2018.
- 6. Dietmar Jannach. Recommender Systems An Introduction, 2010.
- 7. Deepak K. Agarwal. Statistical Methods for Recommender Systems, 2016.

Reference Books:

- 1. Shlomo Berkovsky, Collaborative Recommendations Algorithms, Practical Challenges and Applications, 2019.
- 2. Nick Seaver, Computing Taste Algorithms and the Makers of Music Recommendation, 2022.
- 3. Aristomenis, Machine Learning paradigms- Applications in Recommender Systems, 2015.
- 4. Gulden Uchyigit, Personalization Techniques and Recommender Systems, 2008.

Bloom's Level of		Contin	uous Lear (60	End Semester Assessments		
Cogi	nitive Task	CLA-1 (10%)		CLA-3 (10%)	(50%)	
Level 1	Remember	30%	20%	30%	0%	
Level I	Understand					
Level 2	Apply	70%	80%	70%	100%	

Learning Assessment (Macro)

	Analyse					
Loval 2	Evaluate					
Level 3	Create					
	Total	100%	100%	100%	100%	100%

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Computational and Complexity Theory

Course Code	CSE 439	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3
Pre-Requisite		Co-Requisite		Progressiv				
Course(s)		Course(s)		e Course(s)				
Course		Professional /						
Offering	CSE	Licensing						
Department		Standards						

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** To clarify the practical view towards the applications of these ideas in the engineering part of computer science.
- **Objective 2:** Studies problems that cannot be solved and problems for which it is difficult to design efficient algorithms and how we can recognize such hard problems.
- **Objective 3:** Gives a precise definition of what an algorithm is via Turing machines.
- **Objective 4:** Learn central complexity classes, in particular NP-complete problems.

	At the end of the course the learner will be able to	Bloom' s Level	Expected Proficienc	Expected Attainment
		5 Lever	y	Percentage
			Percentage	
Outcome	Identify the methods to prove the	1	70%	65%
1	limitations of computational models.			
Outcome	Illustrate the ideas of solvability,	1	65%	60%
2	computational models, and working			
	with Turing Machines.			
Outcome	Classify and apply decision problems	2	65%	60%
3	into appropriate complexity classes,			
	including P, NP, PSPACE and			
	complexity classes based on			
	randomised machine models			
Outcome	Demonstrate NP-completeness basic	2	60%	55%
4	hard problems.			

Course Outcomes / Course Learning Outcomes (CLOs)

Outcome	Apply	interactive	proofs	in	the	3	60%	55%
5	analysis	s of optimisat	ion prob	lems				

	tion Matrix (CLO) to Program Learning Outcomes (PLO) Program Learning Outcomes (PLO)														
					Prog	ram I	<i>_</i> earn	ing O	utcoi	nes (l	PLO)		D	D	
CLOs	EngineeringKnowledge	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S o c i e t y a n d M u l t i c u l t u l t u r a l S k i l l s	E n v i r o n m e n t a n d S u s t a i n a b i l i t y	M o r a l , a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k i l s	C o m m u n i c a t i o n S k i l l s	Project ManagementandFinance	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f e c t e a r n g L e a r n g L e a r n g L	P S O 1	P S O 2	P S O 3
Outcome 1	2	3	1	2	-								3	2	1
Outcome 2	1	2	3	3	1								2	2	1
Outcome 3	1	3	2	3	1								3	2	1
Outcome 4	1	3	2	3	1								3	2	2
Outcome 5	1	3	1	3									2	1	1
Course	1	3	2	3	1								3	2	1
Average															

Unit	Unit Name	Required	CLOs	References
No.		Contact	Addresse	Used
		Hours	d	
UNIT 1	Context Free Grammars	9		
	Ambiguity in context free grammars.	1	1.0	1
	Minimisation of Context Free Grammars	1	1,2	1
	Chomsky normal form, Greiback normal form,	2	1.0	1
	Pumping Lemma for Context Free Languages	2	1,2	1
	Push down automata	2	1,2	1
	PDA model, acceptance of CFL	2	1,2	1
	Equivalence of CFL and PDA	1	1,2	1
	Introduction to DCFL and DPDA	1	2,3	1
UNIT 2	Turning Machine	8		
	Turing Machine, definition, model,	2	1,2	1
	Computable functions, recursively enumerable	2		
	languages	2	1,2	1
	types of Turing machines (proofs not required).	2	1.0	1
	Universal Turing Machine	2	1,2	1
	linear bounded automata and context sensitive	1	1.0	1
	language	1	1,2	1
	Church-Turing Thesis Computational models	1	1,2	1
UNIT 3	Computability	9		
	A recap of automata theory and the Church-	1	1.0	1
	Turing Thesis	1	1,2	1
	Computational models: Lambda calculus, Turing	1	1.0	1
	machine	1	1,2	1
	Decidability	2	1,2	1
	Reducibility	2	1,2	1
	The PCP problem & Mapping reducibility	1	1,2	1
	The Recursion Theorem	1	2,3	1
	Definition of Information	1	2,3	1
UNIT 4	Time Complexity	10		
	Measuring Complexity, Big-O and small-o	1	3	1
	notation, Analyzing algorithms.	1	3	1
	Complexity relationships among computational	1	2	1
	models	1	3	1
	The Class-P, Examples	2	3	1
	The Class-NP, Examples	2	3	1
	The P versus NP question	1	3	1
	NP-completeness	1	3	1
	The Cook-Levin Theorem	1	3	1
	Additional NP-completeness Problems	1	3	1
UNIT 5	Space Complexity	9		
	Space complexity.	1	3	1
	Savitch's Theorem and NL.	2	3	1

NL-completeness and log-space reductions.	2	3	1
From P-completeness to PSPACE-completeness.	2	3	1
The Classes L and NL	1	3	1
NL completeness, NL equals coNL	1	3	1
Total contact hours	45		

1. Sipser, M. (2012). Introduction to the Theory of Computation (3rd ed.). Publisher.

Other Resources

1. Arora, S., & Barak, B. (2007). Computational Complexity: A Modern Approach. Cambridge University Press.

		Co	Continuous Learning Assessments (50%)							
Bloom's Level of Cognitive Task		CLA-1 (10%)	Mid-1 (15%)	CLA-2 (10%)	CLA-3 (15%)	Semester Exam (50%)				
		Th	Th	Th	Th	Th				
Level 1	Remember	80%	80%	65%	65%	60%				
Level I	Understand	-								
Level 2	Apply	20%	20%	35%	35%	40%				
Level 2	Analyse									
Level 3	Evaluate									
	Create									
Total		100%	100%	100%	100%	100%				

Cryptography and Network Security											
Course Code	CSE 459	Course	Technical	L-T-P-C	3	0	0	3			
Course Coue	CSE 439	Category	Elective (TE)	L-1-1-C							
Pre-Requisite		Co-Requisite		Progressive							
Course(s)		Course(s)		Course(s)							
Course	CSE	Professional /									
Offering		Licensing									
Department		Standards									
Board of		Academic									
Studies		Council									
Approval Date		Approval Date									

Cryptography and Network Security

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Introduce cryptographic principles, methods, and algorithms for data protection.

- **Objective 2:** Understand network vulnerabilities and apply security measures to counter threats.
- **Objective 3:** Explore authentication techniques, key management, and digital signatures for communication.
- **Objective 4:** Analyse security protocols, access controls, and secure communication in networks.
- **Objective 5:** Develop skills to assess risks, design secure systems, and ensure data integrity.

	At the end of the course, the	Bloom's	Expected	Expected
	learner will be able to	Level	Proficiency	Attainment
			Percentage	Percentage
Outcome	Understand cryptographic	2	70 %	65%
1	algorithms, their principles, and			
	applications in data protection			
Outcome	Analyze network vulnerabilities	3	70 %	65%
2	and apply measures to safeguard			
	against attacks.			
Outcome	Implement secure	3	70 %	65%
3	communication protocols			
	ensuring data integrity and			
	confidentiality.			
Outcome	Evaluate and deploy encryption	3	70 %	65%
4	techniques for data privacy and			
	non-repudiation.			

Course Outcomes / Course Learning Outcomes (CLOs)

Outcome	Develop skills to manage	4	70 %	65%
5	network access, authentication,			
	and intrusion detection.			

]	Progr	am L	earn	ing ()	utco	nes (PLO)			
CLOs	EngineeringKnowledge	ProblemAnalysis	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S o c i e t y a n d M u l t i c u l t u l t u l t i s	E n v i r o n m e n t a n d S u s t a i n d S u s t a i i r o n t a b i i t y	M o r a l , a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m W o r k S k i l s	C o m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a n c e	S e l f - D i r e c t e d a n d L i f e L o n g L e a r n i n g	P S O 1	P S O 2	P S O 3
Outcome 1	2	3	3	3	2								3	2	1
Outcome 2	2	2	3	3	2								2	2	1
Outcome 3	2	3	3	2	2								2	2	1
Outcome 4	3	3	3	3	2								2	3	1
Outcome 5	2	3	3	3	2								2	2	1
Course	2	3	3	3	2								2	2	1
Average															

Unit	Unit Name	Required	CLOs	Referenc
No.		Contact	Addresse	es Used
		Hours	d	
UNIT	Introduction	9		
1				
	Introduction, Traditional Cipher structure	1	1	1,2
	Substitution Techniques: Caesar Cipher,	1	1	1
	Monoalphabetic Cipher, Playfair Cipher		1	1
	Hill Cipher, Poly Alphabetic Cipher, One	1	1	1,2
	TimePad		1	1,2
	Transposition Cipher: Rail Fence Cipher,	1	1	1
	Simple Columnar or Row Transposition		1	1
	Motivation for the feistel Cipher structure,	1	1	1
	Stream Ciphers and block Ciphers		1	1
	The data encryption Techniques, Finite Fields	1	1	1
	Advanced Encryption Standard, AES	1		
	encryption, AES decryption, AES example,		1	1,2
	results			
	The avalanche effect, the strength of AES	1	1	1,2
	Stream Ciphers, RC1, RC4	1	1	1,2
UNIT	Public-Key Cryptosystems	8		
2				
	Fermat's and Euler's Theorems	1	2	1,2
	Public-Key Cryptography and RSA, Principles	1	2	1,2
	of public-key cryptosystems		2	1,2
	Applications for public-key cryptosystems,	1	2	1,2
	requirements for public-key cryptosystems		2	1,2
	public-key cryptanalysis. The RSA algorithm,	1		
	description of the algorithm computational		2	1,2
	aspects			
	the security of RSA, Diffie-hellman key	1	2	1,2
	exchange		2	1,2
	Elliptic Curve Cryptography systems, key	1	2	1,2
	exchange protocols			
	man in the middle attack	1	2	1,2
	Elgamal Cryptographic systems	1	2	1,2
UNIT 3	Cryptographic Hash Functions and MAC	6		
	Introduction to Cryptographic Hash Functions	1	3	1,2
	Hash Functions Based on Cipher Block	1	2	
	Chaining		3	1,2
	Secure Hash Algorithm (SHA), SHA1	1	3	1,2
	SHA-3, Application of Cryptographic Hash	1		
	Functions		3	1,2

				, indima 1
	Message Authentication Codes (MAC):	1	3	1,2
	Message Authentication Requirements			
	Message Authentication Functions, Security of	1	2	1.0
	MACs, MACs Based on Hash Functions:		3	1,2
	HMAC	1.0		
UNIT	Authentication	10		
4				
	Digital Signature: Digital Signatures, Elgamal	1	4	1
	Digital Signature Scheme		•	-
	Schnorr Digital Signature Scheme, NIST Digital	1		
	Signature Algorithm, Elliptic Curve Digital		4	1
	Signature Algorithm			
	RSA-PSS Digital Signature Algorithm	1	4	1
	Overview of Authentication Systems:	1		
	Password-Based Authentication, Address-Based		4	1
	Authentication, Cryptographic Authentication		4	1
	Protocols			
	KDCs, Certification Authorities (CAs), Session	1	4	1
	Key Establishment		4	1
	Security Handshake Pitfalls: Login, Mutual	1		1
	Authentication, Integrity/Encryption for Data		4	1
	Two-Way Public Key Based Authentication,	1		
	One-Way Public Key Based Authentication		4	1
	Mediated Authentication (with KDC),	1		
	Needham-Schroeder, Expanded Needham-	-	4	1
	Schroeder			-
	Otway-Rees, Nonce Types. Strong Password	1		
	Protocols: Lamport's Hash,	-	4	2
	Strong Password Protocols, Strong Password	1		
	Credentials Download Protocols	1	4	2
UNIT	Internet Security	12		
5	Internet Security	12		
	IPSec: Overview of IP Security (IPSec), IP	1	E	1
	Security Architecture, Modes of Operation	1	5	1
	Security Associations (SA), Authentication			
	Header (AH), Encapsulating Security Payload	1	5	1
	(ESP)		-	
	Comparison of Encodings	1	5	1
	Comparison of Encodings, Phase 1 IKE -			
	Aggressive Mode and Main Mode	1	5	1
	Phase 2/Quick Mode, Traffic Selectors, The			
	IKE Phase 1 Protocols	1	5	1
	Phase-2 IKE: Setting up IPsec SAs,			
	ISAKMP/IKE Encoding	1	5	1
	<u> </u>			
	Fixed Header, Payload Portion of ISAKMP	1	5	1
	Messages, SA Payload, SA Payload Fields			

Web Security Requirements: Web Security threats	1	5	1		
Web traffic Security Approaches. SSL/TLS: Secure Socket Layer (SSL)	1	5	1		
Transport Layer Security (TLS), TLS Architecture, TLS record protocol	1	5	1		
change cipher spec protocol, Alert Protocol, Handshake Protocol, Https, SSH. Secure Electronic Transaction (SET): SET functionalities	1	5	1		
Dual Signature, Roles & Operations, Purchase Request Generation, Purchase Request Validation, Payment Authorization and Payment Capture.	1	3	2		
Total Contact Hours	45				

- 1. Perlman, R., Kaufman, C., & Speciner, M. (2016). Network security: private communication in a public world. Pearson Education India.
- 2. Stallings, W. (1995). Network and internetwork security: principles and practice. Prentice-Hall, Inc.

Other Resources

- Menezes, B. (2010). Network security and cryptography: Cengage Learning. Chapter, 14, 18-19. Krawetz, N. (2007). Introduction to network security. Charles River Media.
- 2. Kahate A., Cryptography and Network Security. (2015) Mc Graw Hill, 3rd Edition.

		Continuo	us Learnin	g Assessme	ents (50%)	End Semester
Bloor	n's Level of	CLA-1	Mid-1	CLA-2	CLA-3	Exam (50%)
Cognitive Task		(10%)	(20%)	(10%)	(10%)	
		Th	Th	Th	Th	Th
Level 1	Remember	70%	60%	50%	40%	30%
Level I	Understand					
Level 2	Apply	30%	40%	50%	60%	70%
Level 2	Analyse					
Level 3	Evaluate					
Levels	Create					
	Total	100%	100%	100%	100%	100%

Artificial intelligence													
Course Code	CSE 455	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3					
Pre- Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)									
Course Offering Department	Computer Science and Engineering	Professional / Licensing Standards											

Artificial Intelligence

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To create understanding of both the achievements of AI and the theory underlying those achievements.

Objective 2: To introduce the concepts of a Rational Intelligent Agent and the different types of Agents that can be designed to solve problems.

Objective 3: To review the different stages of development of the AI field from human like behavior to Rational Agents.

Objective 4: To impart basic proficiency in representing difficult real life problems in a state space representation so as to solve them using AI techniques like searching and game playing.

Objective 5: To create an understanding of the basic issues of knowledge representation and Logic and blind and heuristic search, as well as an understanding of other topics such as minimal, resolution, etc. that play an important role in AI programs.

Objective 6: To introduce advanced topics of AI such as planning, Bayes networks, natural language processing and Cognitive Computing.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Identify the Intelligent systems and Approaches.	1	70%	65%
Outcome 2	Discuss the building blocks of AI as presented in terms of intelligent agents.	2	70%	65%
Outcome 3	Formalize the problem as a state space, graph, design heuristics and select amongst search or game-based techniques to solve them.	4	70%	65%
Outcome 4	Develop intelligent algorithms for constraint satisfaction problems and	5	70%	65%

Course Outcomes / Course Learning Outcomes (CLOs)

	intelligent systems for Game			
	Playing.			
Outcome 5	Implement application- specific intelligent systems	3	70%	65%
Outcome 6	Represent logic-based techniques to perform inference and planning in given problems.	6	70%	65%

				I	Progr	am L	<i>l</i> earn	ing C)utco	mes (PLO)			
CLOs	En gi ne eri ng K no wl ed ge	Pr ob le m A na lys is	De sig n an d De ve lo p m en t	A na lys is, De sig n an d Re se ar ch	Progr M od er n To ol an d IC T Us ag e	am L So cie ty an d M ult ic ult ur al Sk ill	En Vir on m en t an d Su sta in ab ilit	M or al, an d Et hi cal A wa re ne ss	Jutco In di vi du al an d Te a m w or k Sk	Co m un ica tio n Sk ill s	PLO Pr oj ect M an ag e m en t an d Fi na	Se lf- Di re cte d an d Li fe Lo ng Le ar	PS O 1	PS O 2	PS O 3
						S	У		ill s		nc e	ni ng			
Outcome 1	3	3	3	3	3	1			2		2	2	2	2	2
Outcome 2	3	2	3	2	2	1			2		2	3	2	2	2
Outcome 3	3	3	3	3	2	1			2		2	2	2	2	2
Outcome 4	3	3	3	2	3	1			2		3	3	3	2	3
Outcome 5	3	3	3	3	2	1			2		2	3	2	2	2
Outcome 6	3	3	3	3	2	1			2		2	2	3	3	2
Course	3	3	3	3	2	1			2		2	3	2	2	3
Average															

Unit	Unit Name	Required	CLOs	References
No.		Contact	Addressed	Used
		Hours		
UNIT 1	Introduction	9		
	What is Intelligence.	1	1	1, 2
	Foundations and History of Artificial	1	1	1, 2
	Intelligence.			
	Applications of Artificial Intelligence.	1	5	1, 2
	Types of Different Intelligent system.	1	2	1, 2
	Intelligent Agents, Structure of Intelligent	1	1, 2	1, 2
	Agents.			

				An
	Introduction to Machine Learning and categorization.	1	1, 2	1, 2
	Introduction to Reinforcement Learning.	1	1, 2	1, 2
	Introduction to Deep Learning.	1	1, 2	1, 2
	Introduction to Agents	1	1	1, 2
UNIT 2	Search Mechanisms & Constraint	0		,
	Satisfaction problems.	9		
	Introduction to Search (Single Agent).	1	1	1, 2
	Introduction to Search (Two Agents).	1	1	1, 2
	Introduction to State space.	1	1	1, 2
	Searching for solutions.	1	2, 3	1, 2
	Uniformed search strategies.	1	3, 4	1, 2
	Informed search strategies.	1	3, 4	1, 2
	Local search algorithms and optimistic	1	3, 4	1, 2
	problems Adversarial Search.			
	Least commitment search.	1	3	1, 2
	Constraint satisfaction problems.	1	2	1, 2
UNIT 3	Knowledge Representation and Reasoning	9		
	Propositional Logic and Inference rules.	1	2	1, 2, 3, 4
	Predicate Logic (first order logic).	1	2, 3	1, 2, 3, 4
	Inference in FOL.	1	2, 3	1, 2, 3, 4
	Rule-based system, Logical Reasoning.	1	2, 3	1, 2, 3, 4
	Forward &Backward Chaining.	1	2, 3	1, 2, 3, 4
	Knowledge Resolution.	1	3, 4	1, 2, 3, 4
	AI languages and tools – Lisp.	1	5	1, 2, 3, 4
	AI languages and tools –Prolog.	1	5	1, 2, 3, 4
	AI languages and tools –CLIPS.	1	5	1, 2, 3, 4
UNIT 4	Problem Solving and planning	9		
	Formulating problems.	1	1, 2	1, 2, 3, 4
	Problem types	1	2	1, 2, 3, 4
	Solving Problems by Searching.	1	3, 4	1, 2, 3, 4
	Heuristic search techniques.	2	2, 3	1, 2, 3, 4
	Constraint satisfaction problems.	1	3, 4	1, 2, 3, 4
	Plan space, partial order planning, planning	1	3, 4	1, 2, 3, 4
	algorithms		- 7	7 7 - 7
	Stochastic search methods.	1	4	1, 2, 3, 4
	Tabu search, Best first search.	1	4	1, 2, 3, 4
UNIT 5	Learning	9		
	Overview of different forms of learning,	1	1	1, 2
	Inductive tree			
	Decision trees, rule- Game playing	1	2, 3	1, 2
	Perfect decision game-based learning.	1	2, 3	1, 2
	Neural networks.	1	3, 4, 5	1, 2
	Reinforcement learning.	1	2, 4, 6	1, 2
	Game playing: Perfect decision game.	1	3, 4	1, 2

Imperfect decision game.	1	3, 4	1, 2
Evaluation function.	1	3, 4	1, 2
Minimax, Alpha-beta pruning.	1	4, 6	1, 2
Total Theory Contact Hours		45	

- 1. Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson.
- 2. Charniak, E., & McDermott, D. (2002). Introduction to Artificial Intelligence. Pearson Education.
- 3. Nilsson, N. J. (2002). Artificial Intelligence: A New Synthesis. Morgan Kaufmann.
- 4. Pearl, J. (2009). Causality: Models, Reasoning and Inference (2nd ed.). Cambridge University Press.
- 5. Rich, E., Knight, K., & Nair, S. B. (2017). Artificial Intelligence (3rd ed.). McGraw Hill Education.

Recommended Resources

- 1. Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th ed.). Prentice Hall.
- 2. Charniak, E., & McDermott, D. (2002). Introduction to Artificial Intelligence. Pearson Education.
- 3. Nilsson, N. J. (2002). Artificial Intelligence: A New Synthesis. Morgan Kaufmann.
- 4. Pearl, J. (2009). Causality: Models, Reasoning and Inference (2nd ed.). Cambridge University Press.
- 5. Rich, E., Knight, K., & Nair, S. B. (2017). Artificial Intelligence (3rd ed.). McGraw Hill Education.

Continuous Learning Assessments (50%) End Semester **Bloom's Level of** CLA-1 Mid-1 CLA-2 CLA-3 Exam **Cognitive Task** (10%) (15%) (10%) (15%) (50%)Th Th Th Th Th Remember 40% 30% Level 1 50% 40% 50% Understand Apply Level 2 40% 40% 40% 30% 50% Analyse Evaluate Level 3 20% 10% 20% 20% 20% Create Total 100% 100% 100% 100% 100%

Course	CSE 442	Course	Technical	L-T-P-C	3	0	0	3						
Code	C5E 442	Category	Elective (TE)	L-I-F-C	5	U	0	5						
Pre- Requisite	CSE 311	Co-Requisite		Progressive										
Course(s)	0.02011	Course(s)		Course(s)										
Course		Professional /		IEEE										
Offering	CSE	Licensing	IEEE											
Department		Standards												

Machine Learning on Edge Computing

Course Objectives

- **Objective 1:** To understand the limitations of today's Cloud computing models which are not designed for the volume, variety, and velocity of data generated by billions of IoT devices.
- **Objective 2:** To understand the features of Edge Computing architecture and analyse the applications of AI in Edge Computing.
- **Objective 3:** To familiarize with AI/ML models which can be deployed at edge to handle IoT applications.
- **Objective 4:** To understand and develop applications for edge nodes that are closest to the network edge and ingest the data from IoT devices.
- **Objective 5:** To understand how inferences can be drawn from ML workloads, performances of edge devices through the case studies.

Course Outcomes

	At the end of the course the learner will be able to	Bloom 's Level	Expecte d Proficie ncy Percenta ge	Expecte d Attainm ent Percenta ge
CO 1	Demonstrate architectural models and design issues in edge computing.	2	70%	65%
CO 2	Apply various Edge + IoT communication paradigms for AI/ML applications.	3	70%	65%
CO 3	Identify and mitigate resource management and optimization challenges for training of ML models.	3	70%	65%
CO 4	Develop efficient ML models for deployment at the IoT-Edge platforms.	3	70%	65%
CO 5	Demonstrate case studies and ML simulation frameworks for different real-worldapplications.	4	70%	65%

	Program Learning Outcomes (PLO)														
CLOs	E n g i n e e r i n g K n o w l e d g e	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S = C = C = C = C = C = C = C = C = C =	E n v i r o n m e n t a n d S u s t a i n d S u s t a i i r o n m e n t a n d S u s t t a j i r	M o r a l , a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k i l s	C o m m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a n c e	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f e l f - D i r e c t e d a n f f - D i r e c t f e c f f e c f f e c f f e c f f f e c f f f e c f f e c f f e c f f f f	P S O 1	P S O 2	P S O 3
Outcome 1	3	3	3	2	1							3	3	1	2
Outcome 2	3	3	3	2	2	1			3			2	3	2	2
Outcome 3	3	3	3	2	2				3			3	3	2	2
Outcome 4	3	3	3	3	2	1			3			2	3	2	2
Outcome 5	3	3	3	2	2	1			2			2	3	2	2
Course Average	3	3	3	2	2	1			3			2	3	2	2

Unit No.	Unit Name	Requir ed Contac t Hours	CLOs Address ed	Referen ces Used	
-------------	-----------	-----------------------------------	-----------------------	------------------------	--

1 I I I I I I I I I I I I I I I I I I I	Introduction Introduction to Computing, Internet of Things (IoT) Cloud Computing and its limitations to support low latency use cases. Edge Computing and its Ecosystem Edge Computing Architecture, Edge ML Applications of AI in Edge Computing Exploring the Landscape of Artificial Intelligence and Machine Learning Supervised Learning Limited Supervised Learning and Reinforcement Learning, Regression Analysis	8 1 2 2 2 12 2 1 2 1 2 1 2 1 2 1 2 1 2	1 1 1 1 1 2 2 2 2	1 1 1 1 1,2 1,2
C1aFFMUNIT2N2SUIIFFFC	Cloud Computing and its limitations to support low latency use cases. Edge Computing and its Ecosystem Edge Computing Architecture, Edge ML Applications of AI in Edge Computing Exploring the Landscape of Artificial Intelligence and Machine Learning Supervised Learning Unsupervised Learning Limited Supervised Learning and Reinforcement Learning, Regression Analysis	1 2 2 2 12 2 1 2 1 2 2 1 2	1 1 1 1 2 2	1 1 1 1,2 1,2
 	latency use cases.Edge Computing and its EcosystemEdge Computing Architecture, Edge MLApplications of AI in Edge ComputingExploring the Landscape of Artificial Intelligence andMachine LearningSupervised LearningUnsupervised LearningLimited Supervised Learning and ReinforcementLearning,Regression Analysis	2 2 2 12 2 12 2 1 2 2 1 2	1 1 1 2 2	1 1 1,2 1,2
FImage: Product of the second s	Edge Computing and its Ecosystem Edge Computing Architecture, Edge ML Applications of AI in Edge Computing Exploring the Landscape of Artificial Intelligence and Machine Learning Supervised Learning Unsupervised Learning Limited Supervised Learning and Reinforcement Learning, Regression Analysis	2 2 2 12 2 12 2 1 2 2 1 2	1 1 1 2 2	1 1 1,2 1,2
Image: ParticipationImage: ParticipationUNITImage: Participation2M2M1Image: Participation1Image: Participation	Edge Computing Architecture, Edge ML Applications of AI in Edge Computing Exploring the Landscape of Artificial Intelligence and Machine Learning Supervised Learning Unsupervised Learning Limited Supervised Learning and Reinforcement Learning, Regression Analysis	2 2 12 2 1 2 1 2	1 1 2 2	1 1,2 1,2
Image: A constraint of the second s	Applications of AI in Edge ComputingExploring the Landscape of Artificial Intelligence and Machine LearningSupervised LearningUnsupervised LearningLimited Supervised Learning and Reinforcement Learning,Regression Analysis	2 12 2 1 2	1 2 2	1,2 1,2
UNIT E 2 M S U I I I F F C	Exploring the Landscape of Artificial Intelligence and Machine Learning Supervised Learning Unsupervised Learning Limited Supervised Learning and Reinforcement Learning, Regression Analysis	12 2 1 2	2 2	1,2
2 N S U I I I F F F C	Machine Learning Supervised Learning Unsupervised Learning Limited Supervised Learning and Reinforcement Learning, Regression Analysis	2 1 2	2	1,2
U I I I I I I I I I I I I I I I I I I I	Unsupervised Learning Limited Supervised Learning and Reinforcement Learning, Regression Analysis	1 2	2	1,2
I I F E C	Limited Supervised Learning and Reinforcement Learning, Regression Analysis	2		
I F F C	Learning, Regression Analysis		2	
H C				1,3
(1	2	1,3
	Bayesian Networks	2	2	1,3
F	Genetic Algorithms	2	2	1,3
-	PSO	2	2	1,3
UNIT 3 E	Exploring Embedded AI at the Edge	11		
S	Systems on a Chip (SoC) and their characteristics	1	3	1,4
F	Exploring the Landscape of Embedded AI Devices	1	3	2,3
F	Raspberry Pi, Intel Movidius Neural Compute Stick	1	3	1,5
	Google Coral USB Accelerator, NVIDIA Jetson Nano, FPGA + PYNQ	1	3	1,2
A	Arduino, A Qualitative Comparison of Embedded AI Devices	1	3	1,3
	Google Colab Machine, GPU/TPUs	2	3	1,4
	IoT-Edge platforms such as Azure IoT hub	2	3	1,1
	IoT-Edge platforms such as AWS IoT platform	2	3	1,2
	Training and Inference of ML workloads in Edge			- ,-
	Computing Environments	7		
	Hands-On with the Raspberry Pi	2	4	1,3
S	Speeding Up with the Google Coral USB Accelerator	1	4	1,2
	Port to NVIDIA Jetson Nano, Comparing the	n	1	
	Performance of Edge Devices,	2	4	1,5
	Case Studies: JetBot, Squatting for Metro Tickets,	2	4	1,3
	Cucumber Sorter	4		1,5
$\begin{bmatrix} \text{UNIT} \\ 5 \end{bmatrix} A$	Advanced topics in Edge ML	7		
Ι	Different use cases of Edge AI	1	5	1
	Predictive maintenance, image classification, self- driving cars	1	5	1
	Docker container and Kubernetes	2	5	1,2
	MQTT and Kafka for end-to-end IoT pipeline	<u> </u>	5	1,2
	Federated Edge learning (FEEL)	1	5	1,3

Challenges and opportunities in Edge ML, Future research directions.	1	5	1,2,3
Total contact hours		45	

- 1. Buyya, R., & Srirama, S. N. (Eds.). (2019). Fog and edge computing: Principles and paradigms. Wiley.
- 2. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
- 3. Pandey, R., Khatri, S. K., Singh, N. K., & Verma, P. (Eds.). (2022). Artificial intelligence and machine learning for EDGE computing. Academic Press.
- Koul, A., Ganju, S., & Kasam, M. (2019). Practical deep learning for cloud, mobile, and edge: Real-world AI & computer-vision projects using Python, Keras & TensorFlow. O'Reilly Media.
- 5. Web resources as per the recommendation of the instructor.

		Conti	nuous Lear	rning Assess	ments (50%)) E	Ind
Bloom's Level of Cognitive Task			Theory (50%)				nester xam 0%)
		CLA-1 (10%)	CLA-2 (10%)	Mid-1 (20%)	CLA-3 (10%)	Th	
Level	Remember	50%	40%	40%	40%	30%	
1	Understand	50%	4070	4070	+070	50%	
Level	Apply	50%	60%	60%	60%	70%	
2	Analyse	30%	00%	60%	60%	/0%	
Level	Evaluate						
3	Create						
	Total	100%	100%	100%	100%	100 %	

	whome and whereas becunty											
Course Code	CSE 443	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3				
Pre-Requisite Course(s)	CSE 315	Co-Requisite Course(s)		Progressive Course(s)								
Course Offering Department	CSE	Professional / Licensing Standards										

Mobile and Wireless Security

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Understand the terminology and classification associated with various IEEE wireless technology standards.

Objective 2: Describe the major software and hardware components and subcomponents used to secure mobile wireless and ad-hoc networks.

Objective 3: Describe security issues in resource constraint wireless networks such as: Wireless sensor network and Internet of Things.

Objective 4: Understand prevention against security threats using various wireless security protocols and algorithms for different wireless networks.

Objective 5: Discuss security & privacy issues of Android Applications. Understand the Android Security Architecture.

	At the end of the course the learner will be able to	Bloom' s Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Identify the security goals and adversarial models of wireless and mobile networks.	1	70 %	65%
Outcome 2	Illustrate security algorithms for mobile wireless and ad-hoc networks.	3	70 %	65%
Outcome 3	Analyse wireless security protocols and protection techniques with their limitations.	5	70 %	65%
Outcome 4	Design authentication, key management, secure localization, device pairing protocols for wireless networks	4	70 %	65%
Outcome 5	Discuss the security and privacy vulnerabilities of mobile application.	2	70 %	65%

Course Outcomes / Course Learning Outcomes (CLOs)

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)CLOsProgram Learning Outcomes (PLO)

	En gi ne eri ng K no wl ed ge	Pr ob le m A na ly sis	D esi gn an d D ev el op m en t	A na ly sis , D esi gn an d Re se ar ch	M od er n To ol an d IC T Us ag e	So ci et y an d M ult ic ult ur al Sk ill s	En vir on m en t an d Su sta in ab ilit y	M or al, an d Et hi ca l A w ar es s	In di vi du al an d Te a m w or k Sk ill s	C o m un ic ati on Sk ill s	Pr oj ec t M an ag e m en t an d Fi na nc e	Se lf- Di re ct ed an d Li fe Lo ng Le ar ni ng	PS O 1	PS O 2	PS O 3
Outcome 1	3	3	2	2	3			1					3	2	1
Outcome 2	3	3	2	3	3			2					2	2	2
Outcome 3	3	3	3	3	3			2					2	2	2
Outcome 4	3	3	3	3	3			2					2	3	2
Outcome 5	3	3	3	3	3			3	2				2	2	2
Course Average	3	3	3	3	3			2	2				2	2	2

Unit	Unit Name	Required	CLOs	References
no.		Contact	Addressed	Used
		Hours		
UNIT 1	Introduction to Mobile and Wireless	9		
	Security			
	WLAN: IEEE 802.11 (a : n)	1	1	1
	WPAN: IEEE 802.15 (Bluetooth &	1	1	1
	Zigbee)			
	WMAN: IEEE 802.16 (WiMAX)	1	1	1
	WMAN mobile: IEEE 802.20 (MBWA)	1	1,2	2
	IEEE 802.21 framework (MIH)	1	1,2	2
	WEP	1	1,2	2
	WEP Tools	1	1,2	2
	WEP Shortcomings	1	1,2	2
	IEEE 802.11i	1	1,2	2
UNIT 2	Next Generation Wireless Networks	9		
	Evolution of mobile networks	1	2	1,2
	Mobility with MIPv6	1	2	1,2
	Mobility with Mobile IPv4	1	2	1,2
	IP mobility with HIP and NetLMM	1	2	2
	Ad Hoc Networks	1	2	2

				An
	Destination Sequenced Distance Vector (DSDV)	1	2,3	2
	Wireless Routing Protocol	1	2,3	1
	Ad Hoc On-demand Distance Vector	1	2,3	1
	Key Management in Ad Hoc Networks	1	2,3	1
UNIT 3	Wireless Sensor Network Security	9		
	Attacks on Wireless Sensor Networks and Countermeasures	1	3	1,2
	Prevention by Authentication and Traffic Protection	1	3	1,2
	Secure Network Encryption Protocol	1	3	1,2
	μ TESLA Protocol	1	3	1
	Tinysec Protocol	1	3	1
	Centralized and Passive Intruder Detection	1	3	1
	Decentralized Intrusion Detection	1	3	1
	Intrusion Tolerance with Multiple Routes	1	3	1
	Key Management in WSN	1	3	1
UNIT 4	Preventing Malicious Behaviour	9	5	1
	Naming and addressing	1	3,4	2
	Establishing Security Association: Key	1	3,4	2
	Establishment in Sensor Network	1	5,4	2
	Establishing Security Association: Utilizing Mobility	1	3,4	2
	Exploiting the properties of Vicinity and of the radio link	1	3,4	2
	Wormhole Detection: Centralized	1	3,4	2
	Wormhole Detection: Decentralized	1	3,4	2
	Privacy in RFID System	1	3,4	2
	Location Privacy in Vehicular Network	1	3,4	2
	Privacy Preserving Routing in Ad-hoc Networks	1	3,4	2
UNIT 5	Mobile Application Security	9		
	Brief Introduction to Android - I	1	5	3
	Brief Introduction to Android - II	1	5	3
	Android Security Model	1	5	3
	Permission	1	5	3
	Package Management	1	5	3
	User Management	1	5	3
	Cryptographic Providers	1	5	3
	Network Security and PKI	1	5	3
		I ⊥		5
	Credential Storage	1	5	3

- Boudriga, N. (2010). Security of mobile communications. Springer.
 Buttyán, L., & Hubaux, J.-P. (2008). Security and cooperation in wireless networks. Cambridge University Press.

3. Elenkov, N. (2014). Android security internals: An in-depth guide to Android's security architecture (1st ed.). No Starch Press

Other Resources

T

- 1. Kempf, J. (2008). Wireless Internet security: Architectures and protocols. Cambridge University Press.
- 2. Doherty, J. (2021). Wireless and mobile device security (2nd ed.). Elsevier.

		Continuo	Continuous Learning Assessments (50%)					
Bloom's Level of Cognitive Task		CLA-1 (10%)	Mid-1 (15%)	CLA-2 (10%)	CLA-3 (15%)	Semester Exam (50%)		
		Th	Th	Th	Th	Th		
Level 1	Remember	70%	60%	50%	40%	30%		
Level I	Understand							
Level 2	Apply	30%	40%	40%	50%	50%		
Level 2	Analyse	-						
Laval 2	Evaluate			10%	10%	20%		
Level 3	Create	1						
]	Fotal	100%	100%	100%	100%	100%		

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

INTERNET PROTOCOLS AND NETWORKING

Course Code	CSE 444	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3
Pre-Requisite	CSE 301	Co-Requisite		Progressive				
Course(s)	CSE 501	Course(s)		Course(s)				
Course		Professional /						
Offering	CSE	Licensing						
Department		Standards						

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** To learn architecture, design principles and techniques for internetworking of computer networks.
- **Objective 2:** To gain in-depth knowledge on analysing, design, implement, monitor, and test the internetworking systems.
- **Objective 3:** To understand the networking algorithms (specifically network, Transport) in the network simulator or through programming languages.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency	Expected Attainment
			Percentage	Percentage
Outcome 1	Define about basic network principles	1	70%	65%
Outcome 2	Identify network layer architecture(framework) along with its functionalities for network protocol design.	1	70%	65%
Outcome 3	Discuss internetworking protocols for wired and wireless networking.	2	70%	65%
Outcome 4	Discuss the performance of heterogeneous networks with respect to transport layer protocols	3	70%	65%

	1				_										1
	Program Learning Outcomes (PLO)														
CLOs	E n g i n e e r i n g K n o w l e d g e	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S o c i e t y a n d M u l t i c u l t u l t u l t u l t u l t s	E n v i r o n m e n t a n d S u s t a i n d S u s t a i n t a n t y i	M o r a l , a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k i l l s	C o m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a c e c t M a n c e c t M a	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f e a r n g L e a r n g L	P S O 1	P S O 2	P S O 3
Outcome 1	2	2	1	1									1	2	3

Outcome 2	2	3	3	3	1				1	3	2	3
Outcome 3	2	3	3	3	1				1	3	2	3
Outcome 4	1	3	2	2	2				1	3	2	3
Course	2	3	3	3	1				1	3	2	3
Average												

Unit	Unit Name	Required	CLOs	Reference
No.		Contact	Addresse	s Used
		Hours	d	
UNIT 1	Internetworking models	10		
	Introduction- Networking models.	1	1	1
	Introduction about TCP/IP protocol suite	1	1,2	1
	Overview of Connecting devices	1	1	1
	Overview of Switches(Layer-2)	2	1	1
	Overview of Routers (Layer-3)	2	1	1,2
	Spanning tree for discovering the path in LAN Networks	1	1	1,2
	Introduction to Gateways	1	1,2	1
	Overview of Backbone networks:	1	1	1
	In detail explanation about LAN, MAN and WAN networks	1	1	1
UNIT 2	Principles of Internetworking	11		
	Overview of connection oriented and		2	1,2
	Connectionless services : Classless and Classful Addressing	1		
	Internet Architecture: Overview of IPv4 and	2	2,3	1
	IPv6 addressing			1
	Overview of Transport Layer Services	2	2,3	1
	Overview of UDP and TCP protocols	2	2,3	1
	Introduction to flow control and Error control in Transport layer	1	2,3	1
	Flow control mechanisms in Transport layer	1	1,2	1,2
	Error control and Congestion Control in Transport layer	2	1,2,3	1.2
UNIT 3	Traffic management in networking	13		
	Overview of data traffic and different traffic flows	2	3	1
	Different types of congestion control mechanisms	1	3	1
	Congestion control in TCP	2	3	1,2
	Network assisted congestion control	2	3	1
	Introduction to Quality of Service	1	3	1
	Techniques to improve QoS service	1	3,4	1.2
	Introduction to Deterministic traffic flows	2	3,4	1

	Overview of Integrated services and Differentiated services: RSVP protocol	2	3	1,2
UNIT 4	Buffer Management	11		
	Overview of Buffer management	2	4	1
	Operation of Drop tail, Drop front and Random drop	2	4	1
	Introduction to Passive buffer management schemes	2	4	1
	Introduction to Active Queue management	1	3,4	1
	Overview of different Queue management mechanisms	1	1,4	1,2
	Overview and operation of Early Random Drop	1	4	1,2
	Overview and operation of Random Early Detection	1	3,4	1,2
	Implementation of RED algorithm in congestion control	1	3,4	1
	Total Contact Hours		45	1

- 1. Comer, D. E., & Stevens, D. L. (2000). Internetworking with TCP/IP, Vol. 3: Client-Server Programming and Applications, Linux/Posix Sockets Version. Prentice Hall PTR.
- 2. Forouzan, B. A. (2002). TCP/IP protocol suite. McGraw-Hill Higher Education.

Other Resources

- 1. Forouzan, B. A. (2007). Data communications and networking. Huga Media.
- 2. Shay, W. A. (1998). Understanding data communications and networks. International Thomson Publishing.
- 3. Kurose, J. F. (2005). Computer networking: A top-down approach featuring the internet, 3/E. Pearson Education India.

Bloor	n's Level of	Continuo	ous Learr (509 Theory	End Semester Exam (50%)			
Cognitive Task		CLA-1 (10%)	Mid- 1 (15%)	CLA- 2 (10%)	CLA- 3 (15%)	Th	Prac
Level 1	Remember Understand	- 50%	40%	40%	40%	30%	
Level 2	Apply Analyse	- 50%	60%	60%	60%	70%	
Level 3	Level 3 Evaluate Create						
	Total		100%	100%	100%	100%	

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	CSE 445	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3
Pre-Requisite		Co-Requisite		Progressive				
Course(s)		Course(s)		Course(s)				
Course		Professional /						
Offering		Licensing						
Department		Standards						

Mobile Application Security Testing

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Students learn cryptography basics (concepts, algorithms, techniques, implementation, and evaluation) for mobile apps.

Objective 2: Students learn basic cryptography implementation for Android mobile security.

Objective 3: Deal with the various aspects arising in architecting secure complex systems, such as analysing and identifying system threats and vulnerabilities, and investigating operating systems security.

At the end of the course the learner will be **Expecte** Expecte able to d d Bloo Proficie Attainm m's ncy ent Level Percent Percent age age Outcome Understanding of Android and iOS ecosystems, exploring key components and security models, 1 2 70% 65% laying the groundwork for comprehensive mobile security assessments Apply mobile pentesting tools, enabling Outcome effective setup, session execution, and 2 3 70% 65% application attack surface analysis Obtain analytical skills to assess and counteract Outcome diverse mobile threats, including program 3 4 70% 65% security vulnerabilities and dynamic analyses for threat mitigation Outcome Obtain critical evaluation skills to address authentication, communication, and privacy 4 4 70% 65% vulnerabilities, proposing strategic enhancements for resilient mobile app security Analyze advanced mobile security measures, Outcome covering robust transport layer protection, 5 4 70% 65% countermeasures for client-side injection,

Course Outcomes / Course Learning Outcomes (CLOs)

secure authentication, and modern cryptographic practices.	

Course Articulation Matrix (CLO) to (PLO)

				I	Progr	am L	<i>learn</i>	ing (Jutco	mes (PLO)			
									In		Pr	Se	PS	PS	PS
				А	М	So	En	М	di		oj	lf-	0	0	0
			De	na	od	cie	vir	or	vi		ect	Di	1	2	3
	En	_	sig	lys	er	ty	on	al,	du	Co	Μ	re			
	gi	Pr	n	is,	n	an	m	an	al	m	an	cte			
	ne	ob	an	De	То	d	en	d	an	m	ag	d			
CLOs	eri	le	d D	sig	ol	M	t	Et	d T	un	e	an			
CLOS	ng K	m A	De ve	n	an	ult ic	an d	hi	Te a	ica tio	m en	d Li			
	no	na	lo	an	d	ult	Su	cal	m m	n	t	fel			
	wl	lys	p	d	IC	ur	sta	Α	W	Sk	an	on			
	ed	is	m P	Re	Т	al	in	wa	or	ill	d	g			
	ge		en	se	Us	Sk	ab	re	k	s	Fi	Le			
	C		t	ar ch	ag	ill	ilit	ne	Sk		na	ar			
				CII	e	S	У	SS	ill		nc	ni			
									S		e	ng			
Outcome 1	3	1	1	1	1								3	1	
Outcome 2	2	3	3	3	2								3	3	
Outcome 3	2	3	3	3	2								3	2	
Outcome 4	2	3	3	3	3								2	2	
Course Average	2	3	3	3	2								3	2	

Course Unitization Plan - Theory

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
UNIT 1	Android Pentesting	9		
	Android Architecture: Linux Kernel	1	1	1
	Native User space, Dalvik VM	1	1	1
	Java Runtime Libraries	1	1	1
	Android Security -Developing and debugging on Android	1	1	1
	RSA, Review of Cryptography Basics	1	1	1
	Androids Securable IPC mechanisms	1	1	1
	Androids Security Model	1	1	1
	Android Permissions Review–Content Providers	1	1	1,2
	Mass storage - Android Security tools	1	1	1,2

				A
UNIT 2	Android Security Assessment Tools	9		
	Introduction, and Setting up drozer	1	2	2,3
	Running a drozer session	1	2	
	enumerating installed packages, Enumerating activities	1	2	2,3 2
	Enumerating activities	1	2	2
	Enumerating content providers	1	2	2,3
	Enumerating services	1	2	2,3
	Enumerating broadcast receivers	1	2	2,3 3
	determining application attack surfaces	1	2	3
	launching activities.	1	2	3
UNIT 3	IoSPentesting	9		
	IoS Architecture: Cocoa Touch	1	3	1,2
	Media, Core Services,	1	3	1,2
	Core OS, iOS Security Architecture, Secure Enclave,	1	3	1,2
	Boot ROM, Touch ID, Code Signing	1	3	1
	IoS Security- Introducing	1	3	2,3
	iOS Application Security, Basics of iOS	1	3	2,3
	application development, developing your first iOS app,	1	3	1
	Running apps on iDevice, iOS MVC design,	1	3	2,3
	iOS security model, iOS secure boot chain,	1	2	2,3 1,2
	iOS application signing	1	3	
UNIT 4	Mobile Malware and App Security	9		
	Program Security: Secure Programs	1	4	1,2
	Non-malicious Program Errors	1	4	1
	Viruses, and Other Malicious Code,	1	4	3,4
	Targeted Malicious Code, and Controls against Program Threats	1	4	2,3,4
	Software vulnerabilities: Buffer and stack overflow,	1	4	1,2
	Cross-site scripting (XSS), and vulnerabilities,	1	4	1,2
	SQL injection and vulnerabilities,	1	4	2,3
	Phishing, Privacy Issues.	1	4	2,3
	Static Analysis, Dynamic Analysis	1	4	1,2,3
UNIT 5	Mobile Risks	9		
	Introduction	1	5	1,2
	Insecure Authentication/Authorization,	1	5	1
	Insecure Communication, Improper Session Handling,	1	5	1,2
	Inadequate Privacy Controls,	1	5	3

Improper Credential Usage, Insufficient Transport layer protection,	1	5	3
Client Side Injection, security Misconfiguration	1	5	2,3
security Misconfiguration, Insufficient Cryptography,	1	5	1,4
Insecure Data Storage,	1	5	1,2
Insufficient Binary Protections	1	5	2,3,4
Total Contact Hours		45 Hours	

- 1. Elenkov, N. (2014). Android security internals: An in-depth guide to Android's security architecture. No Starch Press. 2015 edition.
- Dwivedi, H., Clark, C., & Thiel, D. V. (2010). Mobile application security (Vol. 275). New York: McGraw-Hill.
- 3. Makan, K., & Alexander-Bown, S. (2013). Android security cookbook. Packt Publishing Ltd.
- 4. Yermalkar, S. (2016). Learning iOS Penetration Testing. Packt Publishing Ltd

Other Resources

1. OWASP TOP 10 Mobile Risks-Research papers

Learning Assessment (Theory)

	8	Cont	inuous Learni	ng Assessments	s (50%)	End
	Bloom's Level of Cognitive Task		Mid-1 (15%)	CLA-2 (10%)	CLA-3 (15%)	Semester Exam (50%)
Level 1	Remember	70%	60%	30%	30%	60%
Level I	Understand	70%	00%	50%	30%	00%
Level 2	Apply	30%	40%	70%	70%	40%
Level 2	Analyse	3070	4070	7070	7070	4070
Level 3	Evaluate					
Create						
Total		100%	100%	100%	100%	100%

IOT Security

Course Code	CSE 446	Course Category	Professional Core (C)	L-T-P-C	3	0	0	3
Pre-Requisite		Co-Requisite		Progressive				
Course(s)		Course(s)		Course(s)				
Course		Professional /						
Offering	CSE	Licensing						
Department		Standards						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To provide an understanding the security requirements in IoT architecture and the significance of securing the Internet of Things.

Objective 2: To explore the cryptographic fundamentals essential for IoT, including encryption, digital signatures, and key management.

Objective 3: To gain knowledge about identity and access management solutions tailored for IoT, covering identity lifecycle and access control.

Objective 4: Master privacy preservation techniques for IoT, focusing on data dissemination, location privacy, and robust schemes.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Analyse and identify security concerns in IoT applications and propose suitable security measures.	2	70%	65%
Outcome 2	Implement cryptographic techniques for data protection in IoT systems.	3	70%	65%
Outcome 3	Possess the skills to design and implement identity and access management solutions for IoT devices and applications.	3	70%	65%
Outcome 4	Develop privacy preservation strategies for IoT scenarios, safeguarding sensitive information.	3	70%	65%
Outcome 5	Understand and evaluate cloud security solutions for IoT, enabling secure integration of IoT devices with cloud services.	4	70%	65%

Course Outcomes / Course Learning Outcomes (CLOs)

	Program Learning Outcomes (PLO)														
CL Os	Engi neeri ng Kno wled ge	Pro ble m An aly sis	Desig n and Devel opme nt	Ana lysi s, Des ign and Res earc h	Mo der n To ol and IC T Us age	Socie ty and Multi cultur al Skills	Envir onme nt and Sustai nabili ty	Mor al, and Ethi cal Awa rene ss	Indi vidu al and Tea mw ork Skill s	Comm unicati on Skills	Proje ct Mana geme nt and Finan ce	Self - Dir ecte d and Lif e Lon g Lea rnin g	P S O 1	P S O 2	P S O 3
Out co me 1	2												1	3	
Out co me 2	2	2	3	2	3							1	3	3	
Out co me 3	2	2	3	2	3							1	3	3	
Out co me 4	1	2	2	2	3							1	3	3	
Out co me 5	1	2	2	2	3							1	3	3	
Co urs e Ave rag e	2	2	3	2	3							1	3	3	

Unit No.	Unit Name	Requir ed Contac t Hours	CLOs Address ed	Referenc es Used
UNI T 1	Introduction	9		
	Security Requirements in IoT Architecture, Security in Enabling Technologies, Security Concerns in IoT Applications.	2	1	1

				An
	Security Architecture on the Internet of Things, Security Requirements in IoT, Insufficient Authentication/Authorization, Insecure Access Control, Threats to Access Control, Privacy, and Availability,	3	1	1
	Attacks Specific to IoT. Vulnerabilities, Secrecy and Secret, Key Capacity, Authentication/Authorization for Smart Devices	2	1	1
	Transport Encryption, Attack and Fault trees, The secure IoT system implementation lifecycle.	2	1	1
UNI T 2	CRYPTOGRAPHIC FUNDAMENTALS FOR IOT	8		
	Cryptographic primitives and its role in IoT	2	2	1,2
	Encryption and Decryption, Hashes, Digital Signatures, Random number generation	2	2	1,2
	Cipher suites, Key management fundamentals	2	2	1,3
	Cryptographic controlsbuilt into IoT messaging and communication protocols	1	2	1,3
	IoT Node Authentication	1	2	1,3
UNI T 3	IDENTITY & ACCESS MANAGEMENT SOLUTION S FOR IOT	10		
	Identity lifecycle	2	3	1,3
	Authentication credentials	2	3	2,3
	IoT IAM infrastructure	2	3	1,2
	Authorization with Publish/Subscribe schemes	2	3	1,2
	Access control	2	3	1,3
UNI T 4	PRIVACY PRESERVATION FOR IOT	9		
	Privacy Preservation Data Dissemination	2	4	1,3
	Privacy Preservation for IoT Used in Smart Building	2	4	1,2
	Exploiting Mobility Social Features for Location Privacy Enhancement in Internet of Vehicles	2	4	1,3
	Lightweight and Robust Schemes for Privacy Protection in Key Personal IoT Applications: Mobile WBSN and Participatory Sensing	3	4	1,3
UNI T 5	CLOUD SECURITY FOR IOT	9		
	Cloud services and IoT	2	5	1
	Offerings related to IoT from cloud service providers, Cloud IoT security controls	3	5	1
	An enterprise IoT cloud security architecture	2	5	1,2
	New directions in cloud enabled IoT computing	2	5	1,3
		45		

- 1. The Internet of Things: Enabling Technologies, Platforms, and Use Cases", by Pethuru Raj and Anupama C. Raman (CRC Press)
- 2. Internet of Things: A Hands-on Approach", by Arshdeep Bahga and Vijay Madisetti (Universities Press)

3. Research Papers

	,	Contin	nuous L	earning	Assessme	ents (50%)	End Semester		
Bloor	n's Level of		Theory	v (30%)		Exam	(50%)		
Cognitive Task		CLA-1 (5%)			CLA-3 (10%)	Practical (20%)	Th	Prac	
Level Remember		50%	40%	40%	40%	50%	30%	40%	
1	Understand	30%	4070	40%	40%	50%	30%	4070	
Level	Apply	50%	60%	60%	60%	50%	70%	60%	
2	Analyse	30%	00%	00%	00%	30%	7070	00%	
Level	Evaluate								
3	3 Create								
	Total		100%	100%	100%	100%	100%	100%	

Learning Assessment

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal

Guntur District, Mangalagiri, Andhra Pradesh 522240

Biometric Security

Course Code	CSE 447	Course Category	Core Elective (CE)	L-T-P-C	3003
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)	
Course Offering Department	CSE	Professional / Licensing Standards			
Board of Studies Approval Date	2023	Academic Council Approval Date			

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Understand the fundamentals of biometric technologies and distinguish them from traditional techniques.

Objective 2: Analyse the strengths and weaknesses of leading physiological biometrics like finger-scan, facial-scan, and iris-scan.

Objective 3: Evaluate the principles and components of behavioral biometrics such as signature-scan and keystroke scan.

Objective 4: Assess privacy risks in biometric systems, design privacy-sensitive solutions, and comprehend biometric standards.

Objective 5: Gain proficiency in image processing techniques, image enhancement, segmentation, and its application in fingerprint and iris biometrics

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Demonstrate a comprehensive understanding of biometric fundamentals, technologies, and their applications in security systems	2	75 %	70%
Outcome 2	Evaluate the strengths and weaknesses of different biometric modalities, including physiological and behavioural biometrics	4	70 %	65%
Outcome 3	Privacy risks associated with biometric systems and design privacy-compliant solutions.	2	70 %	65%
Outcome 4	Develop proficiency in image processing techniques, enhancing their ability to process and analyse biometric data.	5	70 %	65%
Outcome 5	Implement fingerprint and iris biometric systems, including minutiae determination and iris recognition.	5	70 %	65%

					Prog	gram L	earning	g Out	comes	(PLO)					
CL Os	Engi neer ing Kno wle dge	Pr ob le m An aly sis	Desi gn and Deve lopm ent	An aly sis, De sig n an d Re sea rch	M od er n T oo 1 an d IC T U sa ge	Soci ety and Mult icult ural Skill s	Envir onme nt and Susta inabi lity	Mo ral, and Ethi cal Aw are nes s	Indi vid ual and Tea mw ork Skil ls	Comm unicati on Skills	Proj ect Man age ment and Fina nce	Sel f- Di rec ted an d Lif e Lo ng Le arn ing	P S O 1	P S O 2	P S O 3
Out	2	3	3	3	3			3					3	2	
com e 1															
Out com e 2	2	2	3	3	3			3					2	2	

Out com e 3	2	3	3	2	3		3			2	2	
Out com e 4	3	3	3	3	3		3			2	3	
Out com e 5		3	3	3	3		3			2	3	
Cou rse Ave rage		3	3	3	3		3			2	2	

Course Unitization Plan: Theory

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
UNIT I	Introduction: Biometric Fundamentals and Physiological Biometrics	11	1	1,2
	Biometric fundamentals – Biometric technologies, Biometrics Vs traditional techniques, Characteristics of a good biometric system	2	1	1,2
	Benefits of biometrics, Key biometric processes: verification, identification and biometric matching	1	1	1,2,3
	Performance measures in biometric systems, FAR, FRR, FTE rate, EER and ATV rate, Applications of Biometric Systems, Security and Privacy Issues.	2	1	1,2
	Physiological Biometrics: Leading technologies: Finger-scan, Facial-scan, Iris- scan, Voice-scan, components, working principles,	2	1	1,2,3
	Competing technologies, strengths and weaknesses	1	1,2	1,2,3
	Other physiological biometrics: Hand-scan, Retina-scan –components, working principles, competing technologies, strengths and weaknesses	2	1	1,2
	Automated fingerprint identification systems	1	1	1,2
UNIT II	Behavioural Biometrics and Privacy and Standards in Biometrics	6		
	Leading technologies: Signature-scan, Keystroke scan, components, working principles, strengths and weaknesses.	2	1,2	1,2

	Assessing the Privacy Risks of Biometrics	2	3	1,2
	Designing Privacy Sympathetic Biometric System	1	3	1,2
	Need for standards – different biometric standards.	1	3	1,2
UNIT				
III	Fundamentals of Image Processing	12		
	Digital Image representation, grayscale image, colour image: RGB, YCbCr, Binary Image	2	4	1,2
	Fundamental steps in Image Processing Image Enhancement: The Spatial Domain Methods,	2	4	1,2
	Image Enhancement: The Frequency Domain Methods	2	4	1,2
	Image Segmentation: Pixel Classification by Thresholding, Histogram Techniques	2	4	1,2
	Smoothing and Thresholding	1	4	1,2
	Gradient Based Segmentation: Gradient Image, Boundary Tracking	2	4	1,2
	Laplacian Edge Detection	1	4	1,2
UNIT IV	Fingerprint Biometrics	9		7
	Fingerprint Patterns, Fingerprint Features	2	4	1,2
	Fingerprint Image, width between two ridges	2	4	1,2
	Fingerprint Image Processing	2	4	1,2
	Minutiae Determination	1	4,5	1,2, 3
	Fingerprint Matching: Fingerprint Classification, Matching policies.	2	4,5	1,2, 3
UNIT V	Iris Biometrics	7		
	Iris System Architecture, Definitions and Notations	1	4,5	1,2,3
	Iris Recognition: Iris location, Doubly Dimensionless Projection, Iris code, Comparison	2	5	1,2
	Comparison Coordinate System: Head Tilting Problem, Basic Eye Model	2	5	1,2
	Searching Algorithm	1	5	1,2
	Fexture Energy Feature	1	4,5	1,2
	Total Hours		45	

Recommended Resources:

- 1. Anil K Jain, Patrick Flynn, Arun A Ross, (2008) "Handbook of Biometrics", Springer.
- 2. Anil K Jain, Arun A Ross, Karthik Nandakumar, (2011) "Introduction to Biometrics", Springer.
- 3. Samir Nanavati, Michael Thieme, Raj Nanavati, (2003). "Biometrics Identity Verification in a Networked World", Wiley-dreamtech India Pvt Ltd, New Delhi.

Learning Assessment

Dlas	m'a Laval of	Continuo	us Learnin	g Assessme	ents (60%)	End Semester
	m's Level of mitive Task	CLA-1 (10%)	Mid-1 (15%)	CLA-2 (10%)	CLA-3 (25%)	Exam (40%)
Lovel 1	Remember	70%	50%	70%	10%	50%
Level 1 Understand						
Level 2	Apply	30%	50%	30%	60%	50%
Level 2	Analyse					
Level 3	Evaluate				30%	
Level 3	Create					
Total		100%	100%	100%	100%	100%

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

CYBER LAW

Course Code	CSE 448	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3
Pre- Requisite Course(s)	NA	Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** Understand the historical development and significance of Intellectual Property Law and its role in the digital age.
- **Objective 2:** Demonstrate knowledge of the trademark registration process, maintenance, and international trademark laws.
- **Objective 3:** Comprehend the principles of copyright law, including ownership, duration, and international copyright issues.
- **Objective 4:** Analyze the concept of Trade Secrets, their protection, and legal implications, including breach of contract and unfair competition.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Apply Intellectual Property Law principles to real-world scenarios effectively.	2	70%	65%
Outcome 2	Navigate trademark registration processes and handle trademark- related legal issues competently.	3	70%	65%
Outcome 3	Interpret copyright laws and address copyright-related disputes and challenges.	3	70%	65%
Outcome 4	Comprehend and engage with patent law, including patent searches and international aspects.	3	70%	65%
Outcome 5	Assess and safeguard trade secrets while understanding the legal consequences of breaches and unfair competition.	4	70%	65%

CLOs	Program Learning Outcomes (PLO)

															Andhra Pradesl
				A n a		S o c i	E n v i	M o	I n d		P r o	S e 1 f - D	P S O 1	P S O 2	P S O 3
	EngineeringKnowledge	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	a l y s i s , D e s i g n a n d R e s e a	M o d e r n T o o l a n d I C T U s a g e	1 e t y a n d M u l t i c u l t u r a l S k	i r o n e n t a n d S u s t a i n a b i	o r a l , a n d E t h i c a l A w a r e n e	d i v i d u a l a n d T e a m w o r k S k i	C m m u n i c a t i o n S k i l l s	o j e c t M a n a g e m e n t a n d F i n a	D i r e c t e d a n d L i f e L o n g L e			
				r c h	C	i 1 1 s	l i t y	s s	1 1 5		n c e	a r n i g			
Outcome 1	2												1	3	
Outcome 2	2	2	3	2	3							1	3	3	
Outcome 3	2	2	3	2	3							1	2	3	
Outcome 4	1	2	3	2	3							1	3	3	
Outcome 5	1	2	2	2	3							1	3	3	
Course Average	2	2	3	2	3							1	3	3	

Unit No.	Unit Name	Requir ed Contac t Hours	CLOs Address ed	Referen ces Used
UNIT 1	Introduction to Intellectual Property Law	7		
	The Evolutionary Past, The IPR Tool Kit – Para	1	1	1
	Legal Tasks in Intellectual Property Law	2	1	1

			100 per la 10-100	Tuluin a T
	Ethical obligations in Para Legal Tasks in Intellectual Property Law	1	1	1
	Introduction to Cyber Law	1	1	1, 3
	Innovations and Inventions Trade related Intellectual			7 -
	Property Right.	2	1	
UNIT	Introduction to Trade Mark			
2		8		
	Trade mark Registration Process	1	2	1,2
	Post registration Procedures	1	2	1,2
	Trade mark maintenance, Transfer of Rights, Inter	-		
	partes Proceeding	1	2	1,3
	Infringement, Dilution Ownership of Trade mark	1	2	1,3
	Likelihood of confusion, Trademarks claims	2	2	1,3
	Trademarks Litigations, International Trade mark	2	2	1,5
	Law	2	2	1,3
UNIT	Law			
UNIT 3	Introduction to Copyrights	11		
	Principles of Copyright Principles	1	3	1,4
	The subjects Matter of Copy right	1	3	2,3
	The Rights Afforded by Copyright Law	1	3	1,5
	Copy right Ownership, Transfer and duration	1	3	1,2
	Right to prepare Derivative works	1	3	1,3
	Rights of Distribution	1	3	1,4
	Rights of Perform the work Publicity Copyright	2	-	
	Formalities and Registrations, Limitations	2	3	1,2
	Copyright disputes and International Copyright Law	2	3	1,2
	Semiconductor Chip Protection Act	1	3	1,3,4
UNIT				, ,
4	The Law of Patents	6		
	Patent searches	1	4	1,3
	Patent ownership and transfer	2	4	1,2
	Patent infringement	1	4	1,5
	International Patent Law.	2	4	1,3, 5
UNIT 5	Introduction to Trade Secret	13		
	Maintaining Trade Secret	2	5	1
	Physical Security	1	5	1
	Employee Limitation Employee confidentiality	2	~	1.0
	agreement	2	5	1,2
	Trade Secret Law	1	5	1,3, 5
	Unfair Competition	2	5	1,4, 5
	Trade Secret Litigation	2	5	1,2,3
	Breach of Contract	1	5	1,2,3
	Applying State Law	2	5	1,2,3
	Total Contact Hours required	-	45	1,2,5
			тJ	

Recommended Resources

- 1. Bouchoux, D. E. (2013). Intellectual property: The law of trademarks, copyrights, patents, and trade secrets. Delmar, Cengage Learning.
- 2. M.Ashok Kumar and Mohd.Iqbal Ali. (2004) "Intellectual Property Right" Serials Pub.
- 3. Ferrera, G. R., August, Lichtenstein, S., & Reder, M. (2000). Cyberlaw: Text and cases. South-Western Thomson Learning.
- 4. Ganguli, P. (2001). Intellectual Property Rights: Unleashing the Knowledge Economy. Tata McGraw-Hill Publishing Company.
- 5. Martin, J. and Turner C. "Intellectual Property" CRC Press.

Other Resources N/A

Learning Assessment

		Con	tinuous L	earning As	sessments ((50%)	End
Bloom's Level of Cognitive Task			Theor	Practical	Semester Exam (50%)		
		CLA-1 (10%)	CLA-2 (10%)	CLA-3 (5%)	Mid-1 (25%)	-	Theory
	Remember		(_ 0 / 0)	(- , -)	()		
Level 1		50%	40%	40%	50%		30%
	Understand						
Level 2	Apply	50%	60%	60%	60%		70%
Level 2	Analyse	3070	00%		00%		7070
Level 3	Evaluate						
Levers	Create						
,	Total	100%	100%	100%	100%		100%

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal

Guntur District, Mangalagiri, Andhra Pradesh 522240

Ethical Hacking

Course Code	CSE 449	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3
Pre- Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** Understand key issues in information security, incident management, and penetration testing.
- **Objective 2:** Learn various foot printing techniques, tools, and competitive intelligence gathering methods, along with countermeasures.
- **Objective 3:** Explore network scanning and enumeration techniques and their respective countermeasures.
- **Objective 4:** Gain expertise in malware analysis, web application attacks, and penetration testing, including SQL injection detection and testing methodologies.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficienc y Percentag e	Expected Attainme nt Percentag e
Outcome 1	Analyze and address security vulnerabilities in information systems effectively.	2	70%	65%
Outcome 2	Conduct ethical hacking assessments and penetration tests with proficiency.	3	70%	65%
Outcome 3	Develop countermeasures against various cyber threats, including foot printing and malware attacks.	3	70%	65%
Outcome 4	Demonstrate expertise in Windows OS security and system hacking techniques.	3	70%	65%
Outcome 5	Apply ethical hacking knowledge to enhance web application security and prevent SQL injection vulnerabilities.	4	70%	65%

Course Outcomes / Course Learning Outcomes (CLOs)

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

CLOs

Program Learning Outcomes (PLO)

															Andhra Prades
	E n g i n e e r i n g K n o w l e d g e	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S o c i e t y a n d M u l t i c u l t u r a l S k i l	E n v i r o n m e n t a n d S u s t a i n d S u s t a i i r o n m e n t a n d s i i i i i i i i i i i i i i i i i i	M o r a l , a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k i l l l	C o m m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a n c	S e l f - D i r e c t e d a n d L i f e L e a r n g L e a r	P S O 1	P S O 2	Andhra Prades
	e d g	i	m e n	e s e a r	U s a g	r a l S k i	n a b i l	a r e n e s	r k S k i l	i 1 1	d F i n a n	n g L e a r n i n			
Outcome 1	2											g	1	3	2
Outcome 1 Outcome 2	2	2	3	2	3							1	3	3	2
Outcome 3	1	2	2	$\frac{2}{2}$	3							1	3	3	2
Outcome 3 Outcome 4	1	2	2 3	$\frac{2}{2}$	3							1	3	3	2
Outcome 4 Outcome 5	$\frac{1}{2}$	2	$\frac{3}{2}$	$\frac{2}{2}$	3							1	3	3	2
Course Average	2	2	3	2	3							1	3	3	2

Unit No.	Unit Name	Requir ed Contac t Hours	CLOs Address ed	Referen ces Used
Unit 1	Introduction to Information Security and Incident Management	5		

			and a local data of	Anoma Fraue
	Key issues plaguing the information security world	2	1	1
	Incident management process	2	1	1
	Penetration testing	1	2	1,2
Unit 2	Foot printing and Competitive Intelligence Gathering	10		
	Various types of foot printing	2	3	1,3
	Foot printing tools	2	3	1,3
	Competitive intelligence gathering	2	3	1,3
	Countermeasures against foot printing	2	3	1,3
	Competitive intelligence gathering	2	3	1,3,5
Unit 3	Network Scanning and Enumeration	8		
	Network scanning techniques	2	2	1,4
	Scanning countermeasures	2	2	2,3
	Enumeration techniques	2	2	1,5
	Enumeration countermeasures	2	2	1,2
Unit 4	System Hacking and Windows OS Security	10		
	System hacking methodology	2	4	1,3,5
	Steganography and steganalysis attacks	2	4	1,2
	Covering tracks	2	4	1,5
	Windows OS security	2	4	1,3
	Hacking into systems by changing passwords and elevating privileges	2	4	1,2
Unit 5	Malware Analysis, Web Application Attacks, and Penetration Testing	12		
	Malware analysis procedure and countermeasures	2	5	1,5
	Web application attacks and hacking methodology	2	5	1,5
	SQL injection attacks and detection tools	2	2,5	1,2,3
	Penetration testing concepts	2	2, 5	1,2,4
	Penetration testing methodologies	2	2, 5	1,2,4
	Penetration testing roadmap	2	2, 5	1,2,4
	Total Contact Hours required	45		

Recommended Resources

- 1. Dafydd, S. & Marcus, P. (2011) The Web Application Hacker's Handbook: Finding and Exploiting Security Flaws.
- 2. David, K., Jim, O., Devon, K., & Mati, A. (2011) Metasploit: The Penetration Tester's Guide.
- 3. Stuart, Mc., Joel, S., & George, K. (2009) Hacking Exposed: Network Security Secrets and Solutions.
- 4. Patri, E. (2013) The Basics of Hacking and Penetration Testing: Ethical Hacking and Penetration Testing Made Easy
- 5. Michael, S., & Andrew, H. (2012) Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software.

Other Resources

N/A

		Con	Continuous Learning Assessments (50%)						
Bloom's Level of Cognitive Task			Theory	Practic	Semester Exam (50%)				
		CLA-1 (10%)	CLA-2 (10%)	CLA-3 (5%)	Mid - 1 (25%)	al	Th	Prac	
Level 1	Remember	50%	40%	40%	50%		30%		
Level I	Understand				5070		30%		
Level 2	Apply	50%	60%	60%	50%		70%		
	Analyse	50%	00%	0070	5070		7070		
Level 3	Evaluate								
Level 5	Create								
]	Fotal	100%	100%	100%	100%		100%		

Learning Assessment

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Security audit and Risk Assessment

Course Code	CSE 450	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3
Pre-Requisite		Co-Requisite		Progressive		1	1	
Course(s)		Course(s)		Course(s)				
Course		Professional /		·				
Offering	CSE	Licensing						
Department	CSE	Standards						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Understand information security performance metrics, common issues, and audit methodologies.

Objective 2: Learn pre-audit preparations, vulnerability analysis, and post-audit actions, including report writing and result analysis.

Objective 3: Explore vulnerabilities, threats, and vulnerability management techniques, including scanning and remediation.

Objective 4: Master vulnerability assessments, risk assessment, and management, including risk treatment and feedback loops.

Objective 5: Gain insights into configuration management, policy development, and testing for secure environments.

At the end of the course the learner will be able to	Bloom 's Level	Expected Proficiency Percentage	Expected Attainment Percentage	
---	----------------------	---------------------------------------	--------------------------------------	--

				CADEMARK APPRING STORES
Outcome 1	Analyse and report on information security performance metrics and variances effectively	1	70 %	65%
Outcome 2	Conduct thorough information security audits, including vulnerability analysis and result interpretation	3	70 %	65%
Outcome 3	Manage vulnerabilities, conduct threat assessments, and implement remediation strategies	5	70 %	65%
Outcome 4	Perform comprehensive information security risk assessments and managing residual risks.	4	70 %	65%
Outcome 5	Demonstrate competence in configuring and managing secure environments through effective configuration reviews and policy development.	2	70 %	65%

	Program Learning Outcomes (PLO) Program Learning Outcomes (PLO)														
		1			Progr	am L	<i>learn</i>	ing O	utcol	mes (.	rlo)		-	-	-
CLOs	EngineeringKnowledge	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S o c i e t y a n d M u l t i c u l t u l t u l t i s	Envi ronmentandSustai nabi lity	M o r a l , a n d E t h i c a l A w a r e s s	I n d i v i d u a l a n d T e a m w o r k S k i l s	C o m m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a c e c	Self -DirectedandLif eLongLearning	P S O 1	P S O 2	P S O 3
Outcome 1	3	3	2	2	3			1					3	2	1
Outcome 2	3	3	2	3	3			2					2	2	2
Outcome 3	3	3	3	3	3			2					2	2	2

Outcome 4	3	3	3	3	3		2			2	3	2
Outcome 5	3	3	3	3	3		3	2		2	2	2
Course Average	3	3	3	3	3		2	2		2	2	2

Unit	Unit Name	Require	CLOs	Referenc
No.	Omt Name	d	Address	es Used
110.		Contact	ed	cs Oscu
		Hours	cu	
Unit 1	Information Security Performance Metrics and Audit	9		
1	Introduction to Security Metrics and Reporting	1	1	1
2	Common Issues and Variances of Performance Metrics	1	1	1
3	Introduction to Security Audit	1	1	1
4	Servers and Storage Devices Security	1	1	1
5	Infrastructure and Network Security	1	1	1
6	Communication Routes and Information Flow	1	1	1
7	Information Security Methodologies (Black-box, White-	1	1	1
	box, Greybox)	_	_	_
8	Phases of Information Security Audit and Strategies	1	1	1
9	Ethics of an Information Security Auditor and NOS	1	1	1
	9003			
Unit 2	Information Security Audit Tasks, Reports and Post	9		
	Auditing Actions			
10	Pre-Audit Checklist and Information Gathering	1	2	1
11	Vulnerability Analysis and Assessment	1	2	1
12	External Security Audit	1	2	1
13	Internal Network Security Audit	1	2	1
14	Firewall Security Audit	1	2	1
15	IDS Security Auditing	1	2	1
16	Social Engineering Security Auditing	1	2	1
17	Web Application Security Auditing	1	2	1
18	Information Security Audit Deliverables & Reporting	1	2	1
Unit 3	Vulnerability Management	9		
19	Introduction to Information Security Vulnerabilities	1	3	1,2
20	Human-based Social Engineering Techniques	1	3	1,2
21	Computer-based Social Engineering Strategies	1	3	1,2
22	Social Media Countermeasures and Defense	1	3	1,2
23	Vulnerability Management Fundamentals	1	3	1,2
24	Vulnerability Scanning Methods	1	3	1,2
25	Vulnerability Testing and Assessment	1	3	1,2
26	Threat Management and Mitigation	1	3	1,2
27	Remediation and Security Improvement Processes	1	3	1,2
Unit 4	Information Security Assessments	9		
28	Introduction to Vulnerability Assessment	1	4	1,2
29	Classification of Vulnerabilities	1	4	1,2

				rindina i radeau
30	Types of Vulnerability Assessment	1	4	1,2
31	Vulnerability Assessment Phases	1	4	1,2
32	Vulnerability Analysis Stages	1	4	1,2
33	Characteristics of a Good Vulnerability Assessment	1	4	1,2
	Solution			
34	Considerations in Vulnerability Assessment	1	4	1,2
35	Vulnerability Assessment Reports and Tools	1	4	1,2
36	Information Security Risk Assessment and Management	1	4	1,2
Unit 5	Configuration Reviews	9		
37	Introduction to Configuration Management	1	5	1,2
38	Configuration Management Requirements and	1	5	1,2
	Documentation			
39	Developing a Configuration Management Plan	1	5	1,2
40	Configuration Control and Change Management	1	5	1,2
41	Creating Configuration Control Policies	1	5	1,2
42	Testing in Configuration Management	1	5	1,2
43	Configuration Audits and Compliance	1	5	1,2
44	Configuration Management Tools and Software	1	5	1,2
45	Best Practices in Configuration Management	1	5	1,2
	Total contact hours		45	

Recommended Resources

- 1. Vladimirov, A. A., & Gavrilenko, K. V. (2010). Assessing information security: strategies, tactics, logic and framework. IT Governance Ltd.
- 2. Szor, P. (2005). The art of computer virus research and defense. Pearson Education.

Other Resources

- 1. https://www.sans.org/readingroom/whitepapers/threats/implementing-vulnerabilitymanagement-process-34180.
- 2. http://csrc.nist.gov/publications/nistpubs/800-40-Ver2/SP800-40v2.pdf.

Learning Assessment

		Contin	uous Learn	ing Assessment	ts (50%)	End
	's Level of itive Task	CLA-1 (10%)	Mid-1 (20%)	CLA-2 (10%)	CLA-3 (10%)	Semester Exam (50%)
		Th	Th	Th	Th	Th
Level 1	Remember	70%	60%	50%	40%	30%
Level I	Understand					
Level 2	Apply	30%	40%	40%	50%	50%
	Analyse					
Level 3	Evaluate	-	-	10%	10%	20%
	Create					

				0	Andhra Pradesh
Total	100%	100%	100%	100%	100%

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

	Dış	gital Forensic and I	ncident Resp	onse				
Course Code	CSE 451	Course Category	Technical Elective (TE)	L-T-P-C	3	0	0	3
Pre-Requisite		Co-Requisite		Progressive				
Course(s)		Course(s)		Course(s)				
Course	CSE	Professional /						
Offering		Licensing						
Department		Standards						

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** Understand the fundamentals of incident response, cybersecurity forensics principles, and their relevance to cybersecurity operation.
- **Objective 2:** Develop proficiency in preparation, including the formulation of policies, incident handling workflows, and the use of various incident response tools.
- **Objective 3:** Gain expertise in the identification phase by mastering techniques for detection, triage, and incident classification, along with the use of indicators of compromise (IOCs).
- **Objective 4:** Acquire the skills needed for effective containment, including damage limitation, system isolation, and forensic backup and imaging, while limiting malware spread.
- **Objective 5:** Explore the digital forensics investigation process, including applicable laws, evidence collection, chain of custody, and the use of technical forensics tools and techniques, such as those for analysing hard disks, file systems, network devices, and mobile devices.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficienc y Percentag e	Expected Attainment Percentage
Outcome 1	apply incident response phases, policies, and procedures in real-world cybersecurity scenarios	3	75 %	70%
Outcome 2	effectively identify and classify security incidents using indicators of compromise (IOCs) and triage techniques.	2	70 %	65%

Outcome 3	demonstrate proficiency in containing and mitigating security incidents while limiting damage and malware spread.	4	70 %	65%
Outcome 4	conduct digital forensics investigations in compliance with applicable laws and chain of custody requirements.	3	70 %	65%
Outcome 5	utilize a range of technical forensics tools and techniques to analyze digital evidence and investigate cyberattacks.	4	70 %	65%

							-					
CLOs	E n g i n e e r i n g K n o w l e d g e	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t				-		P r oj e ct M a n a g e m e nt a n d F in a n c e	P S O 1	P S O 2	P S O 3
Outcome 1	2	3	3	3	3		3	3		3	2	2
Outcome 2	2	2	3	3	3		3	3		2	2	2
Outcome 3	2	3	3	2	3		3	3		2	3	2
Outcome 4	3	3	3	3	3		3	3		2	3	2
Outcome 5	2	3	3	3	3		3	3		2	3	2

Course	2	3	3	3	3		3	3		2	3	2
Average												

Course of	niuzation Plan			
Unit No.	Unit Name	Requir ed Contac t Hours	CLOs Addres sed	Referen ces Used
UNIT I	Introduction	08		
	Definitions of incident response and forensic analysis,	00		
	relation of incident response to the rest of cybersecurity operations	2	1	1,2
	Incident response phases - preparation, identification, containment, eradication, recovery,	2	1,2	1,2
	Incident response phases- follow-up, indicators of compromise (IOC)	1	1,2	1,2,3
	forensic analysis as an incident response tool and as support for cybercrime investigations	2	1,2	1,2,3
	cybersecurity forensics principles	1	1,2	3,7
UNIT II	Preparation, Identification, Containment	12		
	Preparation: Policies and procedures, incident workflows, guidelines, incident handling forms, principles of malware analysis	2	3	3,7
	Preparation: log analysis, threat intelligence, vulnerability management, penetration testing	2	3	3,7
	Preparation: digital forensics, incident ticketing systems, incident documentation templates	2	2	3,7
	Identification: Detection, incident triage, information gathering and reporting, incident classification, indicators of compromise (IOC).	2	2	3,7
	Identification: incident classification, indicators of compromise (IOC).	1	2	3,7
	Containment: Damage limitation, network segment isolation, system isolation	1	2,3	3,7
	Containment forensic backup and imaging, use of write blockers, temporary fixes, malware spread limitation.	2	2,3	3,7
	Eradication, Recovery, Follow-up	9		
	Eradication, Recovery, Follow-up Eradication: Actual removal and restoration of affected systems, removal of attack artifacts, scanning of other systems to ensure complete eradication, use of IOCs on other systems and local networks,	2	3	4,5

				THUR I
	Eradication: cooperation with forensic analysis to understand the attack fully.	1	3	4,5
	Recovery: Test and validate systems before putting back into production, monitoring of system behaviour	2	3	4,5
	Recovery: ensuring that another incident will not be created by the recovery process.	1	3	4,5
	Follow-up: Documenting lessons learned	1	3	4,5
	Follow-up: preparatory activities for similar future incident, technical training, process improvement.	2	3	4,5
UNIT IV	Digital Forensics Investigation Process:	6		
	Applicable laws,	1	4	6,7
	investigation methodology,	1	4,5	6,7
	chain of custody, evidence collection, digital evidence principles	2	4	6,7
	rules and examination process, first responder procedures.	2	4	6,7
UNIT V	Technical forensics tools and techniques:	10		
	Hard disks, removable media and file systems,	1	4,5	5,6
	Windows forensics, duplication/imaging of forensic data,	2	4,5	4,5,6
	recovering deleted files and hidden or deleted partition	1	4,5	5,6
	steganography and image forensics	2	5	7
	log analysis, password crackers, network device forensics, packet capture analysis,	2	5	5,6
	email tracking, mobile forensics, investigation of attacks, common tools (Encase, FTK, etc.)	2	5	5,6
	Total Contact Hours		45	

Recommended Resources:

- 1. Jason, T. L., & Matthew, P. (2014) Incident Response & Computer Forensics, 3rd ed.
- Murdoch, D. W., Murdoch, D. (2014) Blue Team Handbook: Incident Response Edition: A condensed field guide for the Cyber Security Incident Responder. Createspace Independent Publishing Platform
- 3. Johnson, L. (2013). Computer incident response and forensics team management: Conducting a successful incident response. Newnes.
- 4. Sammons, J. (2014). The basics of digital forensics: the primer for getting started in digital forensics. Syngress.
- 5. Carvey, H., & Altheide, C. (2011). Digital forensics with open source tools. Elsevier.
- 6. Watson, D. L., & Jones, A. (2013). Digital forensics processing and procedures: Meeting the requirements of ISO 17020, ISO 17025, ISO 27001 and best practice requirements. Newnes.
- 7. IEEE Journals and Magazines.

Learning Assessment

		Conti	Continuous Learning Assessments (60%)					
Bloom's Level of Cognitive Task		CLA-1 (10%)	Mid-1 (15%)	CLA-2 (10%)	CLA-3 (25%)	Semester Exam (40%)		
T	Remember	70%	50%	70%	30%	50%		
Level 1	Understand							
Level 2	Apply	30%	50%	30%	70%	50%		
Level 2	Analyse							
Level 3	Evaluate							
Level 5	Create							
,	Total	100%	100%	100%	100%	100%		

Security Analytics

Course Code	CSE 452	Course	Technical	L-T-P-C	3	0	0	3		
Course Coue	CSE 452	Category	Elective (TE)	L-1-F-C	5	U	U	3		
Pre-Requisite		Co-Requisite		Progressive						
Course(s)		Course(s)		Course(s)						
Course		Professional /		·						
Offering	CSE	Licensing								
Department	CSE	Standards								

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Understand the fundamentals of information security and its relevance in modern data-driven environments

Objective 2: Explore deep packet inspection techniques for web security, including one-class multi-classifier systems and host intrusion detection.

Objective 3: Develop skills in automated correlation for constructing attack scenarios and gain insights into the challenges of privacy in security analytics.

Objective 4: Analyse security challenges and solutions for big data environments, including anomaly detection, anonymization, and encryption.

Objective 5: Examine the importance of privacy in big data and its legal aspects, covering topics such as GDPR or PDP compliance, digital identity protection, and defense against model poisoning attacks.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	apply data mining techniques for effective network intrusion detection and web security.	1	70 %	65%
Outcome 2	understand and apply adversarial machine learning concepts to enhance security analytics	3	70 %	65%
Outcome 3	implement security measures for big data, including anonymization and encryption.	5	70 %	65%
Outcome 4	evaluate privacy preservations in big data, compliance data protection laws.	4	70 %	65%
Outcome 5	develop the capability to defend against model poisoning attacks in	3	70 %	65%

Course Outcomes / Course Learning Outcomes (CLOs)

machine learning for security		
applications.		

		Program Learning Outcomes (PLO)													
CLOs	E n g i n e e r i n g K n o w l e d g e	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S = C = C = C = C = C = C = C = C = C =	E n v i r o n m e n t a n d S u s t a i n d S u s t a i i r o n m e n t a n d S u s t j i r o n t j	M o r a l , a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m W o r k S k i l s	C o m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a r o j e c t M a f e c t M a f e c t M a f e c t M a f e c t f e c	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f e c t e a r n g L e a r n g	P S O 1	P S O 2	P S O 3
Outcome 1	3	3	2	2	3			1					3	2	1
Outcome 2	3	3	2	3	3			2					2	2	2
Outcome 3	3	3	3	3	3			2					2	2	2
Outcome 4	3	3	3	3	3			2					2	3	2
Outcome 5	3	3	3	3	3			3	2				2	2	2
Course Average	3	3	3	3	3			2	2				2	2	2

TT	LL 't No	Destruction	CI O.	Andhra Pradesh
Unit	Unit Name	Require	CLOs	Referenc
No.		d	Address	es Used
		Contact	ed	
		Hours		
Unit 1	Information Security Performance Metrics and Audit	9		
1	Introduction to Information Security	1	1	1
2	Data Mining for Information Security Fundamentals	1	1	1
3	Signature-Based Network Intrusion Detection (e.g.,	1	1	1
	Snort)			
4	Data Mining-Based Network Intrusion Detection	1	1	1
	(Supervised)			
5	Data Mining-Based Network Intrusion Detection	1	1	1
	(Unsupervised)			
6	NIDS Overview and Significance	1	1	1
7	Hands-on with Snort: Signature-Based Detection	1	1	1
8	Building Supervised Data Mining Models for NIDS	1	1	1
9	Unsupervised Data Mining for Network Anomaly	1	1	1
	Detection	1	1	1
Unit 2	Information Security Audit Tasks, Reports and Post	9		
Onit 2	Auditing Actions	7		
10	Introduction to Deep Packet Inspection (DPI)	1	2	1
10		1	2	
	Alert Aggregation for Web Security			1
12	One-Class Multi-Classifier Systems for Packet Payload	1	2	1
10	Modeling	1	2	1
13	Network Intrusion Detection with Multi-Classifiers	1	2	1
14	Host Intrusion Detection: Shell Command Sequence	1	2	1
	Analysis			
15	Host Intrusion Detection: System Call Sequence	1	2	1
	Analysis			
16	Host Intrusion Detection: Audit Trails Analysis	1	2	1
17	Insider Threats in Network Security	1	2	1
18	Strategies for Detecting Masqueraders, Impersonators,	1	2	1
	and Insider Threats			
Unit 3	Vulnerability Management	9		
19	Introduction to Automated Correlation	1	3	1,2
20	Attack Trees: Understanding the Concept	1	3	1,2
21	Building Attack Scenarios from Individual Alerts	1	3	1,2
22	Privacy Issues in Security Analytics	1	3	1,2
23	Introduction to Adversarial Machine Learning	1	3	1,2
23	Overview of Multi-classifier Systems (MCS)	1	3	1,2
25	Advantages of MCS in Security Analytics	1	3	1,2
25	Security Implications of Machine Learning	1	3	1,2
20	Conclusion and Recap of Unit	1	3	1,2
		9	5	1,2
Unit 4	Information Security Assessments		4	1.0
28	Introduction to Anomaly Detection in Cloud Big	1	4	1,2
	Databases			

				Andhra Pradesh
29	Data Anonymization and Pseudonymization Techniques	1	4	1,2
30	Understanding Differential Privacy	1	4	1,2
31	Differential Privacy Methods and Algorithms	1	4	1,2
32	Homomorphic Encryption for Data Privacy	1	4	1,2
33	Secure Multiparty Computation (SMC) Fundamentals	1	4	1,2
34	Combining Privacy Techniques for Enhanced Security	1	4	1,2
35	Privacy Challenges in Cloud Big Databases	1	4	1,2
36	Anomaly Detection for Data Protection	1	4	1,2
Unit 5	Configuration Reviews	9		
37	Introduction to Anomaly Detection in Cloud Big	1	5	3
	Database Metrics			
38	Anonymizing and Pseudonymizing Data for Privacy	1	5	3
39	Understanding Differential Privacy Principles	1	5	3
40	Methods of Implementing Differential Privacy	1	5	3
41	Exploring Homomorphic Encryption for Data Security	1	5	3
42	Secure Multiparty Computation Techniques	1	5	3
43	Data Protection Laws for Big Data and Their	1	5	3
	Implications			
44	Compliance with Data Protection Regulations	1	5	3
45	Ensuring Data Privacy in Big Data: From Personal Data	1	5	3
	to Model Poisoning Attack Defense			
	Total contact hours		45	

Recommended Resources

- 1. Daniel, B., & SushilJajodia. (2002). Applications of Data Mining in Computer Security, Vol. 6. Springer Science & Business Media.
- 2. Marcus A. M. (2006). Machine Learning and Data Mining for Computer Security", Springer Science & Business Media.
- 3. Mark, T., Robert, McP., Miyamoto, I., & Jason, M. (2014). Information Security Analytics: Finding Security Insights, Patterns, and Anomalies in Big Data, Syngress Media, U.S.

Other Resources

- 1. Vemuri, V. R. (2005). Enhancing Computer Security with Smart Technology, Auerbach Publications.
- 2. William Stallings. (2010). Cryptography and Network security: Principles and Practices Pearson/PHI, 5th ed.
- 3. Douglas, R. S. (2006). Cryptography Theory and Practice. Chapman & Hall/CRC, 3rd ed.
- 4. Siddhartha Bhattacharyya (2017). Frontiers in Computational Intelligence. Vol. 3, De Gruyter.

Learning Assessment

Bloom's Level of	Cont	End Semester			
Cognitive Task	CLA-1	Mid-1	CLA-2	CLA-3	Exam (50%)
Cognitive Task	(10%)	(20%)	(10%)	(10%)	

		Th	Th	Th	Th	Th
Level 1	Remember	70%	60%	50%	40%	30%
Level I	Understand					
Level 2	Apply	30%	40%	40%	50%	50%
Level 2	Analyse					
Level 3	Evaluate	-	-	10%	10%	20%
Level 5	Create					
	Total	100%	100%	100%	100%	100%

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

	Multiview Geometry										
Course Code	CSE 453	Course	Technical	L-T-P-C	3	0	0	3			
Course Coue	CSE 455	Category	Elective (TE)	L-I-F-C							
Pre-Requisite		Co-Requisite		Progressive							
Course(s)		Course(s)		Course(s)							
Course		Professional /									
Offering		Licensing									
Department	CSE	Standards									

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Introduce the basic and advanced imaging technique

- Objective 2: Explain the concepts of 3D modelling using single view to multi view
- **Objective 3:** To gain knowledge over accessing and modification of 3D models in real-world scenario

	At the end of the course the learner	Bloom's	Expected	Expected
	will be able to	Level	Proficiency	Attainment
			Percentage	Percentage
Outcome 1	Understand Content creation editing and	2	70%	65%
	managing of camera model.			
Outcome 2	Use and examine the inner content of	3	70%	65%
	the image for 3D modelling			
Outcome 3	Use the architecture of 3D mesh,	3	70%	65%
	texture, point cloud and make them easy			
	to handle.			
Outcome 4	Implement systems using multiview and	6	70%	65%
	stereo camera system to solve user			
	requirements.			

]	Progr	am L	earn	ing O	utcor	nes (]	PLO)				
CLOs	EngineeringKnowledge	ProblemAnalysis	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S o c i e t y a n d M u l t i c u l t u l t u l t u l t u l t s	E n v i r o n m e n t a n d S u s t a i n d S u s t a i i r o n t a b i i t y	M o r a l , a n d E t h i c a l A w a r e n e s s	I n d i v i d u a l a n d T e a m w o r k S k i l s	C o m u n i c a t i o n S k i l l s	P r o j e c t M a n a g e m e n t a n d F i n a n c e	S e l f - D i r e c t e d a n d L i f e c t e d a n d L i f e c t e a r n g L e a r n g L e a r n g L e a r n g L e a r n g L e a r n g L e a r n g L e a r n g L e a r a r n g L e a r a r a r a r a r a r a r a r a r a	P S O 1	P S O 2	P S O 3
Outcome 1	3	1	2	1	2							3	3	2	1
Outcome 2	3	2	1	2	2							3	3	2	2
Outcome 3	3	3	3	2	2							3	3	2	2
Outcome 4	3	3	3	2	3							3	3	3	2
CourseAvera	3	2	2	2	2							3	3	2	2
ge															

	Unit Name	Required	CLOs	Reference
No.		Contact	Addresse	s Used
		Hours	d	
Unit 1	UNIT I: Introduction	10		
	Multiple View Geometry	1	1	1
	Projective Geometry	1	1	1
	Transformations and Estimation	1	1	1
	Projective Geometry and Transformations of 3D,	3	1	1
	Estimation – 2D Projective Transformations	3		1
	Algorithm Evaluation and Error Analysis, Feature	4	1	1
	points (SIFT, SURF, etc)	4		1
Unit 2	Camera system	8		
		3	1,2	1
	Camera Models	5		1
	Computation of the Camera Matrix	3	1,2,4	1
	More Single View Geometry,	2	1,2	1
Unit 3	Epipolar Geometry	9		
	Epipolar Geometry and the Fundamental Matrix	1	2	1
	3D Reconstruction of Cameras and Structure	1	2	1
	Computation of the Fundamental Matrix	1	2,4	1
	Structure Computation	3	2,4	1
	Scene planes and homographies	1	2,3	1
	Affine Epipolar Geometry	2	2	1
Unit 4	Multiple camera	7		
	Three-View Geometry/ multiview geometry	2	3	1
	The Trifocal Tensor	2	3	1
	Computation of the Trifocal Tensor	1	3	1
	Linearities and Multiple View Tensors	1	3	1
	Auto-Calibration	1	3	1
Unit 5	3D Model	11		
	Stereo Calibration	2	3,4	1
	Stereo Modelling	2	4	1
	3D modelling rectification	2	4	1
	Depth Estimation	1	4	1
	Stereo SFM	1	4	1
	3D model application like :planner form from 3D		4	1
	image, crack and fault detection, stereo camera-	3		
	based 3D inspection			
	Total Contact Hours	45		

Recommended Resources

1. Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision. Cambridge university press.

Other Resources

1. Recent articles about multimedia (recommended at classes)

	0		Conti	inuous	Learning	g Asse	ssments	s (50%)		End	
Bloom's Level of Cognitive Task		CLA-1 (10%)		Mid-1 (20%)		CLA-2 (10%)		Mid-2 (10%)		Semester Exam (50%)	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level 1	Remember	40		40%		40		40%		10%	
Level I	Understand	%				%					
Level 2	Apply	40		40%		40		40%		50%	
Level 2	Analyse	%				%					
Level 3	Evaluate	20		20%		20		20%		40%	
Levers	Create	%				%					
		10		100		100		100		100	
r .	Total			%		%		%		%	
		%									

Learning Assessment

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

		Quantum Co	mputation					
Course Code	CSE 454	Course	Technical	L-T-P-C	3	0	0	3
Course Coue	CSE 434	Category	Elective (TE)	L-1-F-C	5	U	0	5
Pre-Requisite		Co-Requisite		Progressive				
Course(s)		Course(s)		Course(s)				
Course		Professional /						
Offering	CSE	Licensing						
Department		Standards						

Quantum Computation

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Expose students to quantum mechanics, linear algebra, and familiarity with the Dirac notation.

Objective 2: Develop students' professional skills to get one's quantum moorings right.

Objective 3: Demonstrate the concepts of quantum computation and quantum information.

Objective 4: Students develop an understanding of quantum entanglement, quantum algorithms, quantum channels.

Objective 5: Provide an authentic introduction to IBM quantum computer and associated simulators students develop an understanding of quantum entanglement, quantum algorithms, quantum channels.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Demonstrate an understanding of mathematical concepts, underlying quantum computing.	2	70%	65%
Outcome 2	Discuss an authentic introduction to IBM quantum computer and associated simulators	2	70%	65%
Outcome 3	Students illustrate to work with Quantum Information System and Quantum Mechanics.	3	70%	65%
Outcome 4	Students learn to analyse systems applying the concept of Quantum information.	4	70%	65%
Outcome 5	Students learn to develop a special algorithm suited for quantum Computing.	4	70%	65%

Course Articulation Matrix (CLO) to (PLO)

	Program Learning Outcomes (PLO)														
CLOs	EngineeringKnowledge	P r o b l e m A n a l y s i s	D e s i g n a n d D e v e l o p m e n t	A n a l y s i s , D e s i g n a n d R e s e a r c h	M o d e r n T o o l a n d I C T U s a g e	S Can 1 S o c i e t y a n d M u l t i c u l t s k i l s	E n v i r o n m e n t a n d S u s t a i n d S u s t a i i r o n t t a y i i y	M o r a l, a n d E t h i c a l A w a r e s s	I n d i v i d u a l a n d T e a m w o r k S k i l l s	C o m u n i c a t i o n S k i 1 1 s	P r o j e c t M a n e n t a n d F i n a c e	S e l f - D i r e c t e d a n d L i f e a r n g L e a r n i n g L e n i n n n n n n n n n n n n n n n n n	P S O 1	P S O 2	P S O 3
Outcome 1	3	2	2	2	2							g	3	3	2
Outcome 2	2	3	3	3	3								2	2	2
Outcome 3	2	3	2	3	3								2	2	2
Outcome 4	2	3	3	3	3								2	2	2

Course Average	2	3	3	3	3								2	2	2
-------------------	---	---	---	---	---	--	--	--	--	--	--	--	---	---	---

Course Unitization Plan

Unit No.	Unit Name	Require d Contact Hours	CLOs Address ed	Referenc es Used
Unit 1	Introduction	14		
	Elementary quantum mechanics	2	1	1,2
	linear algebra for quantum mechanics	3	1	1,2
	Quantum states in Hilbert space,	3	1	1,2
	The Bloch sphere, Density operators,	3	1	1,2
	generalized measurements, no-cloning theorem	3	1	1,2
Unit 2	Quantum correlations	7		
	Bell inequalities and entanglement,	2	2	1
	Schmidt decomposition,	3	2	1
	Super- dense coding, teleportation.	2	2	1,2
Unit 3	Quantum cryptography	5		
	Quantum key distribution	5	3	1,2
Unit 4	Quantum gates and algorithms	13		
	Universal set of gates,	3	4	1
	quantum circuits,	3	4	1,2
	Solovay-Kitaev theorem,	2	4	1,2
	Deutsch-Jozsa algorithm,	3	4	1
	Factoring	2	4	1
Unit 5	Programming a quantum computer	6		
	The IBMQ,	2	5	1,2
	Coding a quantum computer using a simulator to carry out basic quantum measurement and state analysis.	4	5	1,2
Total C	ontact Hours	45		

Recommended Resources

- 1. Parag, K. K. (2020). Quantum Computing: A Beginner's Introduction, McGraw Hill Publications.
- 2. Chris, B. (2020). Quantum Computing for Everyone, The MIT Press, Cambridge.

Other Resources

- 1. Nielsen, M. A. & Chuang, I. (2013). Quantum Computation and Quantum Information. Cambridge University Press.
- 2. Eleanor, G. R. & Wolfgang, H. P. (2014). Quantum Computing, A Gentle Introduction. MIT press.

Learning Assessment

Continuous Learning Assessments (50%)
--

Bloom's Level of Cognitive Task		CLA-1 (10%)	Mid-1 (20%)	CLA-2 (10%)	CLA-3 (10%)	End Semester Exam (50%)
Level 1	Remember	70%	60%	30%	30%	60%
Level I	Understand	7070	00%	30%	30%	00%
Level 2	Apply	30%	40%	70%	70%	40%
Level 2	Analyse	3070	40%	70%	70%	40%
Level 3	Evaluate					
Level 5	Create					
r	Total	100%	100%	100%	100%	100%